
Technical University of Denmark

Debugging ML code

02476 Machine Learning Operations

Nicki Skafte Detlefsen

Debugging ML code 15 January 2024



Technical University of Denmark

Debugging is a hard but necessary disiplin

5 January 2024 Debugging ML code 2



Technical University of Denmark

Debugging ML code is even harder

Bugs in ML code can be non-ml specific and ML specific

🐛Classic bugs: Code does not run

Use traditional debugger to find these

🐛ML specific bugs: My model is not converging

Need the correct approach for debugging

Lets start with the classics…

5 January 2024 Debugging ML code 3



Technical University of Denmark

First step: Get a good environment

💡Jupyter notebooks are great at what they are meant for: exploring ideas and combining 

code + text into standalone document…

💡However, it can be a pain debugging code in notebooks…

5 January 2024 Debugging ML code 4

VS Code Torchstudio Pycharm Spyder



Technical University of Denmark

Python debugging in general

1. Print statements

2. Stop at an interesting point in your 

code and interact

3. Work in an actual debugger

Learn more here

https://switowski.com/blog/ipython
-debugging

5 January 2024 Debugging ML code 5

https://switowski.com/blog/ipython-debugging
https://switowski.com/blog/ipython-debugging


Technical University of Denmark

VS code debugger

5 January 2024 Debugging ML code 6



Technical University of Denmark

VS code debugger

Step options:

💻F5: next breakpoint

💻F10: next line

💻F11: step into

💻Shift-F11: step out

💻CTRL-Shift-F11: Restart

💻Shift-F5: stop

5 January 2024 Debugging ML code 7

Local variables

Where you are

Step options

Debugging indicator

Specific debug console



Technical University of Denmark

Back to these ML specific bugs

Or better know as

⚠️When everything is running, but results are wrong⚠️

Finding these buggers comes with experience

A potpourri of my findings over the last couple of years and others.

5 January 2024 Debugging ML code 8

https://twitter.com/rasbt/status/1591470884732403713


Technical University of Denmark

1. Check your data!

Your starting point should always be the data in ML!

Check

✅Examine summary statistics (data normalized?)

✅Look at label distributions (is it shuffled?)

✅Visualize a few samples (are they corrupted in anyway?)

If you are working on datasets you know, you may skip these steps.

5 January 2024 Debugging ML code 9



Technical University of Denmark

2. Start as simple as you can

Remove all the fancy stuff

• Mixed precision

• Regularization like dropout

• Early stopping

• Learning rate schedulers

• …

One or more of these may be enabled by default if 

you are starting from someone's else codebase

5 January 2024 Debugging ML code 10

Prompt:

Machine Learning bot with a fancy hat



Technical University of Denmark

3. Make everything deterministic

Every machine learning run is by default random. Try fixing:

💡Seed everything and use same seed everywhere

💡Remove all data augmentation

💡Use only a single batch of data where you have a feeling of the outcome

5 January 2024 Debugging ML code 11



Technical University of Denmark

4. Investigate the math

Debug the math:

💡Go through your code, line by line

💡There should be a one-to-one match between equations and lines of code

💡Refactor if it is not clear

Check dimensions and annotate if necessary or use typing software

5 January 2024 Debugging ML code 12

https://github.com/patrick-kidger/torchtyping/


Technical University of Denmark

4. Investigate the math (continue)

💡Lookout for broadcasting!

💡Broadcasting in python is both a blessing and a curse

💡It can create problems (real life example)

What is the problem here?

5 January 2024 Debugging ML code 13



Technical University of Denmark

5. Overfitting is good?

Overfitting is usually seen as an bag thing 

bug…

💡Models should be able to memorize one 

batch

💡Train on one batch, if loss is 0 move on 

to larger models/large data else debug

5 January 2024 Debugging ML code 14



Technical University of Denmark

6. Really look at your loss

Assuming your model is training without errors, but your loss is not behaving as it should.

💡Are you printing/logging the results correctly?
💡Did you remember loss.backward, optimizer.step and optimizer.zero_grad ?
💡What about your learning rate and batch size?

For your loss, if possible, calculate in log-space

5 January 2024 Debugging ML code 15



Technical University of Denmark

7. Visualizations are your friend

Log and visualize everything

💡Training loss is really decreasing 

right?

💡Can you add additional metrics?

💡Log dynamic changing 

hyperparameters (learning rate with 

lr schedulers)

💡Plot data, predictions, 

reconstructions etc. over time

5 January 2024 Debugging ML code 16



Technical University of Denmark

8. Add complexity over time

If you are still good, then

💡Get a baseline that just works (=train on more data data)
💡Stop overfitting:

Add back regularization

Add back data augmentations

💡Tune hyper parameters

5 January 2024 Debugging ML code 17



Technical University of Denmark

Summary of steps in ML debugging

1. Check your data

2. Start as simple as you can

3. Make everything deterministic

4. Investigate the math

5. Overfit to your data

6. Look at your loss

7. Visualize everything

8. Add complexity in steps

5 January 2024 Debugging ML code 18



Technical University of Denmark

Meme of the day

5 January 2024 Debugging ML code 19


	Slide 1: Debugging ML code
	Slide 2: Debugging is a hard but necessary disiplin
	Slide 3: Debugging ML code is even harder
	Slide 4: First step: Get a good environment
	Slide 5: Python debugging in general
	Slide 6: VS code debugger
	Slide 7: VS code debugger
	Slide 8: Back to these ML specific bugs
	Slide 9: 1. Check your data!
	Slide 10: 2. Start as simple as you can
	Slide 11: 3. Make everything deterministic
	Slide 12: 4. Investigate the math
	Slide 13: 4. Investigate the math (continue)
	Slide 14: 5. Overfitting is good?
	Slide 15: 6. Really look at your loss
	Slide 16: 7. Visualizations are your friend
	Slide 17: 8. Add complexity over time
	Slide 18: Summary of steps in ML debugging
	Slide 19: Meme of the day

