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02476 Machine Learning Operations
Nicki Skafte Detlefsen

Monitoring

Based on slides by Duarte O. Carmo
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Remember this figure

Select
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We are in the endgame now

Machine Learning models are dynamic and degrade over
time after being deployed to production.
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= Dynamic model.

Ermoji icons Source: www . flaticon.com
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Operations is hard

“All models are wrong, but some are useful” - George Box

“87% of data science projects never make it into production”

Data Machine -
Verification Resource Monitoring
i Management
Configuration Data Collection Serving
Infrastructure
Analysis Tools

Feature

. Process
Extraction

Management Tools
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What can fail?

» Monitoring deals with things if when they break o
/—:T\.s can fail

Applications will fail for many reasons, but we can group / Wy s lemrri

into three | (e.gs Data) ’_)

ML failures X /

« Software failures ‘ul

* Business failures l\ /
/

But these can/uill also fail
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Software failures

“Software is never done (only abandoned)”
All the reasons a non-ML application already can fail

Dependencies
Deployments
Hardware
Downtime/crashing
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ML failures

ML specific applications can fail for even more reasons

x i your inpu‘ts

Edge cases
t/: t/ouf‘ ou‘tpu‘ts

Feedback loops
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ML failures

1. Data drift
Model perform worse on unseen data
1. Target drift
The world have changed, you need to wake up
Deal with by

£4 Train model on massive dataset initially

Domain adaptation of large models

Retrain from scratch or finetune
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ML failures

To know how you are doing, you most likely is going to need labels for incoming data.
Three ways to get them:

& Hand labels
Annotate by hand, expensive as hell

¢ Natural labels
You get correct label in the future, leverage it

¢ Programmatic labels
Any feedback is better than non, get creative
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Business failures

When ML deployments are not synchronized with business, then it fails

We are not doing enough predictions

KEY

Model predictions are not benefitting KPI

Deal with by

Better business alignment

Y

PERFORMANCE INDICATOR

PK Medier
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Logs

. Logs are textual or structured records generated by
applications

. They provide a detailed account of events, errors,
warnings, and informational messages that occur
during the operation of the system

. Logs are essential for diagnosing issues,
debugging, and auditing.
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Metrics

Quantitative measurements of the system.

Traces

. Traces are detailed records of specific transactions
or events as they move through a system.

. Atrace typically includes information about the
sequence of operations, timing, and dependencies
between different components.

. They are usually numbers that are aggregated over
a period of time. E.g. the number of requests per
minute.

. Traces help in understanding the flow of a request
or a transaction across different components.

Metrics are used to get an overview of the system
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Telemetry Grafana
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Let’s setup a system

Request ML Prediction
> Application

>
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Let’s setup a system

Technical University of Denmark
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Let’s setup a system
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Request

Logging and
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Let’s setup a system

Data

Database

Gather input/output
—

—>

Request ML Prediction
Application

>

/metrics
endpoint

Logging and m Metrics DB

trace DB metrics

Technical University of Denmark Monitoring



=
—]
—

W

Let’s setup a system

Data

Database

Gather input/output
—

—>

Request ML Prediction
Application

>

/metrics
endpoint
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Visualization .
| Logging and Pull Metrics DB
|
|

framework trace DB metrics
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Let’s setup a system

Compare distributions

Historic /
DElE training data
Database
Gather input/output Send computed signal
9 P s

Request ML Prediction
Application

>

/metrics

_____________ endpoint S

|
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Visualization .
I Logging and Pull Metrics DB
|
|

framework trace DB metrics

15 January 2024 Technical University of Denmark Monitoring



=
—]
—

W

Let’s setup a system

Compare distributions

Historic /
DElE training data
Database
Gather input/output Send computed signal
79 o«

1 Request ML Prediction
Application

>

alerts /metrics

_____________ endpoint S
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1o \
Visualization .

I Logging and Pull Metrics DB

|

|

framework trace DB metrics
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Summary

£2 Things will break, so it is better to know when it happens
£2 You are trying to deliver value, make sure you know when

Get feedback, save what you can
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Meme of the day
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