

02476 Machine Learning Operations Nicki Skafte Detlefsen

Scaling applications

When can we start

- Scaling applications can be important to meet requirements
- We should only do it when we have a working system
- Else we run into problems of premature optimization
 - We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil "

- Donald Knuth

What is a distributed application

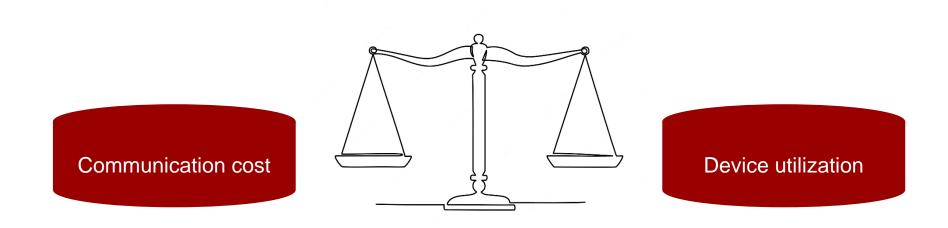
Computing on multiple threads/devices/nodes in parallel

What can run in parallel

- P Data loading
- **P** Training
- lnference

The key take away

1 Distributed computation is not always beneficial, its a trade-off:



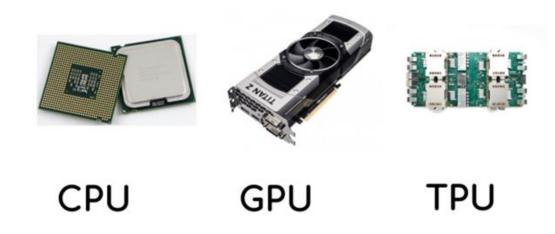
Lets take a look at training

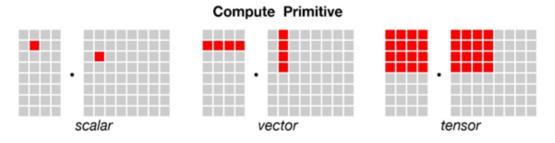
Devices

Three common types of devices

💡 CPU

- 6 General compute unit
- 2-128 parallel operations
- 💡 GPU
- left Rendering unit
- 1.000-10.000 parallel operations
- 💡 TPU
- Specialized unit
- 32.000 128.000 parallel operations





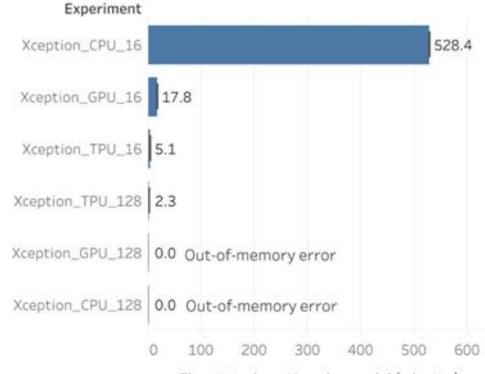
Device memory

• Equally important is the amount of memory you have available

With more memory you get

- Faster data transfer
- Possibility of higher data modalities
- P Larger models

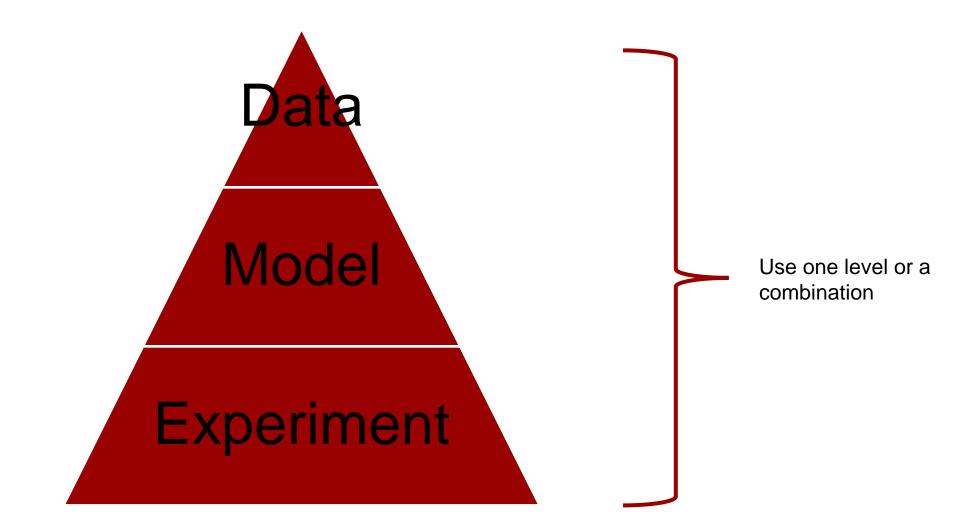
	CPU	GPU	TPU
Standard	34-64 GiB	12 GiB	64 GiB
Maximum	2 TiB	80 GiB	32 Tib



Time to train an Xception model (minutes)

Figure 3: CPUs vs GPUs vs TPUs for training an Xception model for 12 epochs. Y-Axis labels indicate the choice of model, hardware, and batch size for each experiment. Increasing the batch size to 128 for TPUs resulted in an additional ~2x speedup.

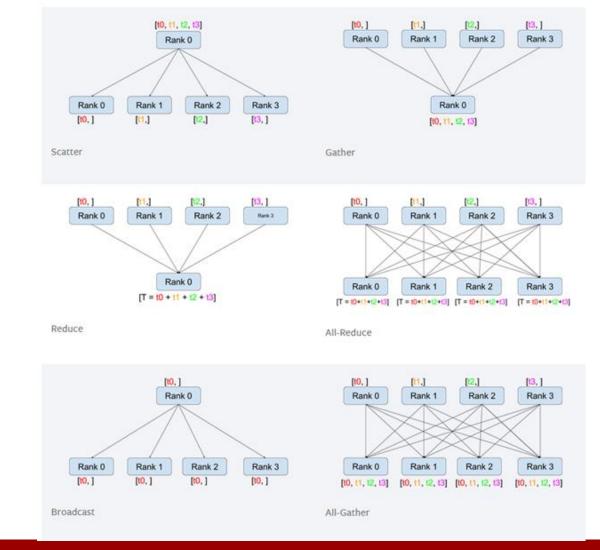
Many layers of distributed computations



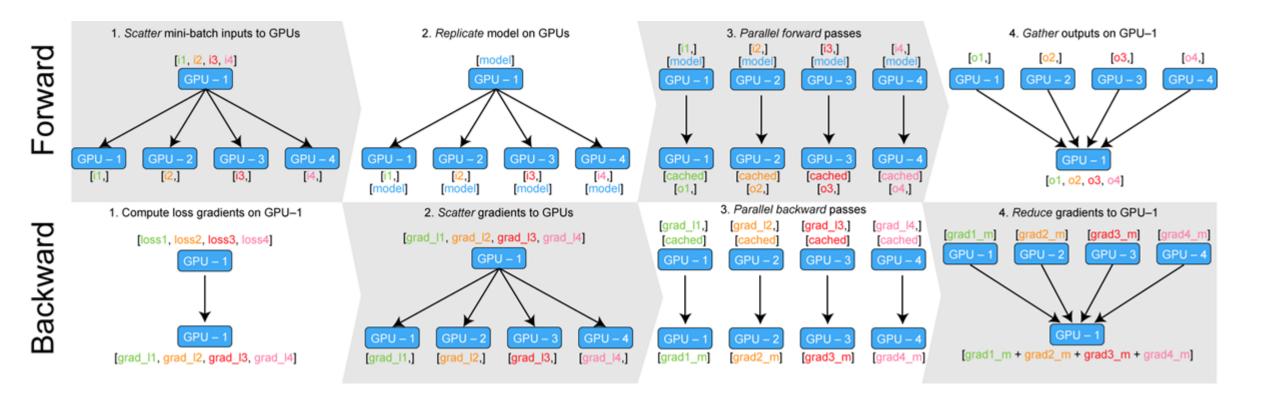
Basic communication operations

- Scatter
- 💡 Gather
- **Reduce**
- 💡 Broadcast
- P All-gather
- 💡 All-reduce

Rank 0: main Rank >0: worker



Data parallel

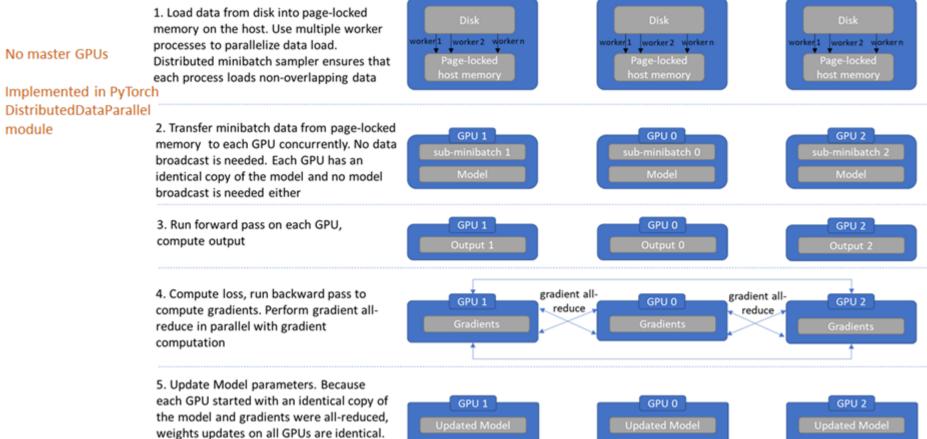


9

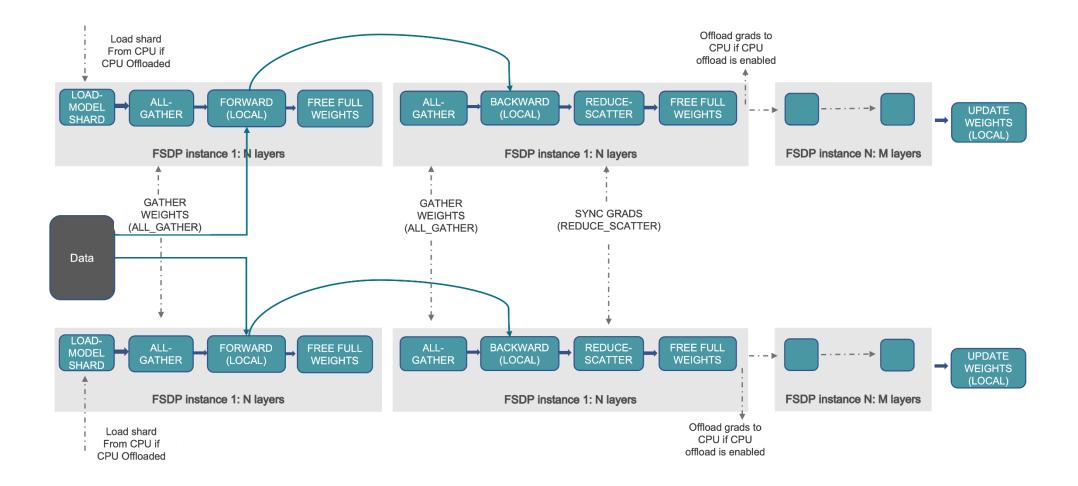
Distributed data parallel

Thus no model sync is required

Distributed Data Parallel



Fully sharded Data Parallel



Comparison

Method	Pros	Cons
Data parallel	Simple to use	Slow due to replicas being destroyed
Distributed data parallel	Fast	High memory requirement
Fully sharded Data Parallel	Large models that other methods	Can be slower than DDP due to high communication cost

How to do it in Pytorch

- 💡 Dataparallel
 - parallel_model = torch.nn.DataParallel(model)
- Pistributed data parallel (DDP)
 - Set a environment MASTER_ADDR and MASTER_PORT
 - Initialize a process group
 - parallel_model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
 - Use mp.spawn to spawn multiple processes
- ...
 Model parallelism
- Just don't

Title

Instead use any high level framework

run on cpu, gpu, tpu, ipu
with no code changes needed

trainer = Trainer(devices=8, accelerator='cpu')

trainer = Trainer(devices=8, accelerator='gpu')

trainer = Trainer(devices=8, accelerator='tpu')

trainer = Trainer(devices=8, accelerator='ipu')

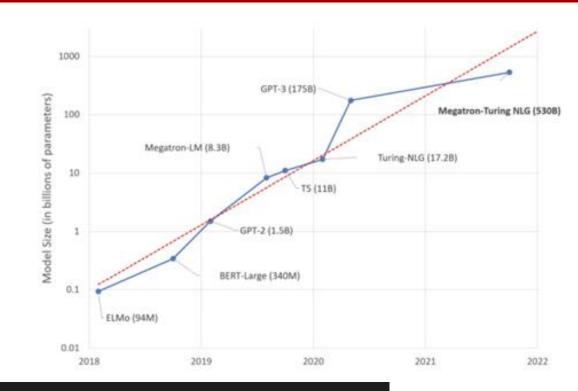
or just let lightning auto detect
trainer = Trainer(devices=8, accelerator='auto')

•••

for gpu, you can also do multiple nodes
32 nodes * 8 gpus per node = 256 gpus!
trainer = Trainer(devices=8, accelerator='gpu', num_nodes=32)

Above and beyond

Scaling matters in deep learning



00

```
# Sharded training using fairscale
trainer = Trainer(devices=4, strategy='ddp_sharded')
# sharded training using deepspeed
trainer = Trainer(devices=4, strategy="deepspeed_stage_1", precision=16)
trainer = Trainer(devices=4, strategy="deepspeed_stage_2", precision=16)
trainer = Trainer(devices=4, strategy="deepspeed_stage_3", precision=16)
```


Remember to compile your model

In Pytorch use model = torch.compile(model)

What about inference?

1 Use batch prediction when possible

app = FastAPI()

@app.post("/predict/")
async def predict(item):

if not data_is_valid(item):
 return {"message": "data not valid"}

item = clean_data(item)
predictions = model.predict(item)
output = format_data(predictions)

```
return output
```

```
app = FastAPI()
```

```
@app.post("/batch-predict/")
async def predict(items: List[str]):
```

```
items = list(set(items)) # <- remove duplicates</pre>
```

items = clean_data(items) # <- probably has some numpy or pandas
predictions = model.predict(items) # <- faster and more efficient than calli
outputs = format_data(predictions)</pre>

return outputs

What about inference?

1 Use caching if possible

```
import functools
@functools.lru_cache(maxsize=128)
def fib(n):
    if n < 2:
        return 1
        return fib(n-1) + fib(n-2)</pre>
```

```
$ python3 -m timeit -s 'from fib_test import fib' 'fib(30)'
10 loops, best of 3: 282 msec per loop
$ python3 -m timeit -s 'from fib_test import fib_cache' 'fib_cache(30)'
10000000 loops, best of 3: 0.0791 usec per loop
```


Meme of the day

