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When can we start

Scaling applications can be important to meet requirements

We should only do it when we have a working system

Else we run into problems of premature optimization
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What is a distributed application

Computing on multiple threads/devices/nodes in parallel

What can run in parallel

Data loading

Training

Inference 
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The key take away

Distributed computation is not always beneficial, its a trade-off:

Lets take a look at training
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Communication cost Device utilization
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Devices

Three common types of devices

CPU

General compute unit

2-128 parallel operations

GPU

Rendering unit

1.000-10.000 parallel operations

TPU

Specialized unit

32.000 - 128.000 parallel operations
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Device memory

Equally important is the amount of memory 

you have available

With more memory you get

Faster data transfer

Possibility of higher data modalities

Larger models
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CPU GPU TPU

Standard 34-64 GiB 12 GiB 64 GiB

Maximum 2 TiB 80 GiB 32 Tib
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Many layers of distributed computations

Data

Model

Experiment
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Use one level or a 

combination
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Basic communication operations

Scatter

Gather

Reduce

Broadcast

All-gather

All-reduce

Rank 0: main

Rank >0: worker
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Data parallel
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Distributed data parallel
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Fully sharded Data Parallel 
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Comparison

Method Pros Cons

Data parallel Simple to use Slow due to replicas being 

destroyed

Distributed data parallel Fast High memory requirement

Fully sharded Data Parallel Large models that other 

methods

Can be slower than DDP 

due to high communication 

cost
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How to do it in Pytorch

Dataparallel

– parallel_model = torch.nn.DataParallel(model)

Distributed data parallel (DDP)

– Set a environment MASTER_ADDR and MASTER_PORT
– Initialize a process group
– parallel_model = nn.parallel.DistributedDataParallel(model, 

device_ids=[gpu])

– Use mp.spawn to spawn multiple processes
– …
Model parallelism

– Just don’t 
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Instead use any high level framework
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Above and beyond

Scaling matters in deep learning
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Remember to compile your model

In Pytorch use model = torch.compile(model)
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What about inference?

Use batch prediction when possible

16 January 2024 Scaling applications 17



Technical University of Denmark

What about inference?

Use caching if possible
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Meme of the day
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