Day12 - Scaling applications

02476 Machine Learning Operations

Nicki Skafte Detlefsen, Associate Professor, DTU Compute

January 2026

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

When can we start

® Scaling applications can be important to meet

requirements ' We should forget
about small

® We should only do it when we have a working system efficiencies, say
about 97% of the

® Eise we runinto problems of premature optimization time: premature
optimizationis
the root of all evil #*

— Donald Knuth

C Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

What is a distributed application

Computing on multiple threads/devices/nodes in parallel

What can runin parallel
® Data loading
® Training

® Inference

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

The key take away

A\ Distributed computation is not always beneficial, its a trade-off:

Communication overhead Device utilization

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

A little side step: Devices

® crU
@& General compute unit “'t/ Fl *
@& 2-128 parallel operations A -.% , :

® GPU . . .

@& Rendering unit

& 1.000-10.000 parallel operations

® TPU
@& Specialized unit

@ 32.000 - 128.000 parallel operations

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

A little side step: Basic communication operations

® Scatter
® Gather
® Reduce

® Broadcast
® All-gather

® All-reduce

Rank 0: main

Rank >0: worker

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Device memory

@ Equally important is the amount of memory you have available

With more memory you get
® Faster data transfer
® Possibility of higher data modalities

® Larger models

CPU GPU
Standard 34-64 GiB 24 GiB
Maximum 2TiB 140 GiB

TPU

64 GiB

32 Tib

Experiment

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Many layers of distributed computations

Data
Model
Experiment

Choose one or more to parallelize over

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

How to parallelize data loading?

Large batch size + num_workers>1 in Pytorch

from torch.utils.data import Dataset

class SimpleDataset(Dataset):
def _init_ (self, data, labels):
self.data = data
self.labels = labels

7]
2]
o
E
=
™
]
=]

def _len_ (self):
p75 100 125 150 175 return len(self.data)

num workers

def __getitem__(self, idx):
x = self.data[idx]
y = self.labels[idx]
return x, y

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

How do | know if | am bottle necked?

If you are using a experiment logger, good chance you are getting this for free :)

i v System 20

GPU Memory Allocated (%) GPU Time Spent Accessing Memory (%) GPU Temperature [°C)

GPU Utilization (3) Network Traffic (Bytes) Disk I/0 Utilization (MB)

Look for system metrics in wandb, https://docs.wandb.ai/models/ref/python/experiments/system-metrics

(Made with GRMIMA)

https://docs.wandb.ai/models/ref/python/experiments/system-metrics
https://gamma.app/?utm_source=made-with-gamma

Models: Data parallel

1. Scatter mini-batch inputs to GPUs 2. Replicate model on GPUs 3. Parallel forward passes 4. Gather outputs on GPU-1

[=] (2]

Forward

-
e
©
=

—
O
®

an

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Models: Distributed data parallel

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Models: Fully sharded data parallel

FSDP instance N: M layers

GATHER GATHER
WEIGHTS WEIGHTS SYNC GRADS
(ALL_GATHER) (ALL_GATHER) (REDUCE_SCATTER)

Data

0ad shari

From CPU if

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

How to do this in Pytorch?

® Dataparallel
Method Pros Cons

e parallel_model =torch.nn.DataParallel(model)

Data parallel Simple to use Slow due to replicas

® Distributed data parallel (DDP) being destroyed

e Setaenvironment MASTER_ADDR and

Distributed data Fast High memory
MASTER_PORT :
parallel requirement
e |nitialize a process group
o parallel_model = Fully sharded Data Large models that Can be slower than
nn.parallel.DistributedDataParallel(model, Parallel other methods DDP due to high
device_ids=[gpu]) communication cost

e Use mp.spawn to spawn multiple processes

[}
® Model parallelism

e Justdon’t

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Instead use any high level framework

run on cpu, gpu, tpu, ipu

with no code changes needed

trainer = Trainer(devices=8, accelerator='cpu')
trainer = Trainer(devices=8, accelerator='gpu')
trainer = Trainer(devices=8, accelerator='tpu')
trainer = Trainer(devices=8, accelerator='ipu')

or just let lightning auto detect

1]

trainer = Trainer(devices=8, accelerator='auto')

O Error uploading image.

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Optimizing Precision: AMP & Quantization

—y)— 00—

Automatic Mixed Precision (AMP)

Goal: Accelerate training and reduce VRAM usage J
without sacrificing accuracy.

Concept: Uses 16-bit (FP16/BF16) for most operations .
while keeping critical values (like gradients/loss) in 32-
bit (FP32) to prevent underflow.

Implementation: In PyTorch, use torch.autocast and .
GradScaler.

Model Quantization

Goal: Drastically reduce model size and latency for
deployment/inference.

Concept: Converts weights and activations from 32-bit
floating point to lower bit-widths, typically INT8 (4x
smaller).

Two Main Strategies:

o Post-Training Quantization (PTQ): Fast, appliesto a
pre-trained model with a small calibration set.

o Quantization-Aware Training (QAT): Models the
quantization error during training for higher
accuracy at low bit-widths.

(Made with GRMMA)

https://gamma.app/?utm_source=made-with-gamma

Above and beyond

Scaling matters in deep learning

e

Megatron-Turing MLG {$308)

Deepspeed is highly optimized for overlapping communication across
devices with computation going on

GitHub - deepspeedai/DeepSpeed: DeepSpeed is a deep learning_
optimization library that makes distributed training and inference easy,
efficient, and effective.

L N N
t Sharded training using fairscale
trainer = Trailner(devices=4, strategy='ddp_sharded')

sharded training using deepspeed
trainer = Trainer(devices=4, strategy="deepspeed_stage_ 1", precision=16)
trainer = Trainer(devices=4, strategy="deepspeed stage 2", precision=16)
trainer = Trainer(devices=4, strategy="deepspeed stage 3", precision=16)

(Made with GRMIMA)

https://github.com/deepspeedai/DeepSpeed
https://github.com/deepspeedai/DeepSpeed
https://github.com/deepspeedai/DeepSpeed
https://gamma.app/?utm_source=made-with-gamma

Remember to compile your model

A\ In Pytorch use model = torch.compile(model)

nference Optimization on LLaMa 2 Models

BerFoRE 07ERATOR ToRcH InoucToR
Fusion OPERATOR FUSION

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Other smaller optimizations

Checkpoints

Frequent checkpointing
with asynchronous
saving prevents training
pauses during disk

writes.

GPU Augmentation

Move augmentations to
GPU using DALI when
CPU is the bottleneck.

Data Formats

Use WebDataset,
Parquet, or HDF5 instead
of raw images/CSVs to
reduce /0 bottlenecks.

Prefetching

Use prefetch_factorin
Dataloader to fetch
batches ahead, keeping
GPU from waiting.

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

What about inference?

A\ Use batch prediction when possible

from fastapi import FastAPI

from typing import List

from pipeline import model
clean_data
format_data
data_is_valid

from fastapi import FastAPI

from pipeline import model
clean_data
format_data

data_is_valid
app = FastAPI

"/batch-predict/"
async def predict(items: List[str

app = FastAPI

"/prﬂedict/" items = list(set(items)) # <- remove duplicates

async def predict(item

items i for i in items
if data_is_valid(i) == True] # <- leverage list comprehensions

if not data_is_valid(item

1 . items = clean_data(items) # <- probably has some numpy or pandas
return {"message”: "data not valid" N ’

predictions = model.predict(items) # <- faster and more efficient than calli
outputs = format_data(predictions

item = clean_data(item
predictions = model.predict(item
output = format_data(predictions

return outputs

return output

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

What about inference?

A\ Use cachingif possible

import

. Lru_cache(maxsize=128)
def fib(n):
if n < 2:
return 1
return fib(n-1) + fib(n-2)

$ python3 -m timeit -s 'from fib_test import fib' 'fib(30)'
10 loops, best of 3: 282 msec per loop

$ python3 -m timeit -s 'from fib_test import fib_cache'
10000000 loops, best of 3: 0.0791 usec per loop

'fib_cache(30)"

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Couple of last notes

* Yes, the material will stay up

e Projectreport: https://github.com/SkafteNicki/dtu_mlops/tree/main/reports

e Project checklist:
o No, thereis not a specific number | look for to be fulfilled
o Yes, you need to have some cloud in the project

e Theremaining week is reserved for your projects:

o Tomorrow (Wednesday) the last lecture, a simple summary lecture will take place. Fully online as | will not be at
campus.

o Thursday and Friday no lectures.
o Thursday and Friday we need to vacate the auditorium due to renovations

e Please remember to do evaluation: https://evaluering.dtu.dk/

(Made with GRMIMA)

https://github.com/SkafteNicki/dtu_mlops/tree/main/reports
https://evaluering.dtu.dk/
https://gamma.app/?utm_source=made-with-gamma

Meme of the day

GIIHI'I' Wlll TIIAI&HY‘MIIIIE[IIEII i

https://skaftenicki.github.io/dtu_mlops/s9_scalable_applications/
https://gamma.app/?utm_source=made-with-gamma

