
Day8 - Deployment
02476 Machine Learning Operations
Nicki Skafte Detlefsen, Associate Professor, DTU Compute

January 2026

https://gamma.app/?utm_source=made-with-gamma

Remember This Figure
We are now in the end part of the figure&

[1] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., & Dennison, D. (2015). Hidden Technical Debt in Machine
Learning Systems. NIPS, 2494-2502.

https://gamma.app/?utm_source=made-with-gamma

Operations is Model Deployment

D In ML, inference refers to the use of a trained model to predict

labels/generate for new data on which the model has not been trained.

D Around 80% of compute spend in the cloud on machine learning is spent on

inference.

https://gamma.app/?utm_source=made-with-gamma

Production Requirements

Deploying ML models to production requires careful consideration of multiple critical factors. Each requirement plays a vital role in ensuring your models perform reliably at scale.

Infrastructure

Scalable compute resources, storage solutions, and
networking capabilities to handle production workloads

efficiently.

Portability

Models must run consistently across different environments4
from development to staging to production.

Performance

Low latency, high throughput, and efficient resource utilization
are essential for production workloads.

Stability

Models must maintain consistent performance over time,
handling edge cases and unexpected inputs gracefully.

Security

Protect models from adversarial attacks, ensure data privacy,
and maintain secure access controls.

https://gamma.app/?utm_source=made-with-gamma

We Start With a Model
The deployment journey begins in the staging area, where your trained model has been validated and tested.

https://gamma.app/?utm_source=made-with-gamma

Before Deployment: Optimize

Start by optimizing the model

01

Pruning

Remove unnecessary weights and connections to reduce

model size without sacrificing accuracy.

02

Quantization

Convert high-precision weights to lower precision (e.g.,

FP32 to INT8) for faster inference.

03

Compiling / Layer Fusion

Combine multiple operations into optimized kernels for

improved execution speed.

04

Device Optimizations

Apply hardware-specific optimizations for CPUs, GPUs, or

specialized accelerators.

Goal: Increase throughput, reduce memory footprint, and minimize energy consumption.

[1] https://infohub.delltechnologies.com/en-us/p/unlocking-llm-performance-advanced-quantization-techniques-on-dell-server-
configurations/

https://infohub.delltechnologies.com/en-us/p/unlocking-llm-performance-advanced-quantization-techniques-on-dell-server-configurations/
https://infohub.delltechnologies.com/en-us/p/unlocking-llm-performance-advanced-quantization-techniques-on-dell-server-configurations/
https://gamma.app/?utm_source=made-with-gamma

Next Step: Model Packaging
Convert your trained model into a format optimized specifically for inference workloads. Different frameworks offer various advantages for production deployment.

TensorRT

NVIDIA's high-performance deep learning inference

optimizer and runtime for GPU deployment.

ONNX

Open Neural Network Exchange4an open standard for

representing machine learning models across
frameworks.

GLOW

Graph-Lowering compiler designed to accelerate deep

learning frameworks on various hardware.

https://gamma.app/?utm_source=made-with-gamma

Next Step: Inference Engine

Choosing the right inference backend can dramatically impact your model's performance in production. Different engines are optimized for specific hardware, frameworks, and deployment scenarios.

TorchServe 3 Optimized for serving PyTorch models, with built-in support for batching, model versioning, and metrics.

TensorFlow Serving 3 Designed for efficiently deploying and scaling TensorFlow models with support for gRPC and REST APIs.

Triton Inference Server 3 A highly optimized multi-framework serving engine (supports PyTorch, TensorFlow, ONNX, XGBoost, etc.) with advanced features like dynamic batching, GPU acceleration,
and model ensembles.

BentoML 3 A flexible framework for packaging and deploying models from any framework into production-ready services with strong integration into MLOps pipelines.

Ray Serve 3 A scalable model serving library built on Ray, ideal for distributed inference, model composition, and integrating with reinforcement learning or online training systems.

vLLM 3 Specialized for serving large language models (LLMs) efficiently, using optimized attention kernels and paged memory management to maximize throughput and minimize latency.

https://gamma.app/?utm_source=made-with-gamma

Next Step: API Time

We need to create an application that defines:

1 Model Loading

How the model should be loaded into memory and initialized

2 Input Specification

What input format and data types the model expects

3 Inference Logic

How to execute predictions with the model efficiently

4 Output Format

How model outputs should be structured and returned to clients

Essentially, a machine learning model expects data (tensors) in one

format but the way we send data is normally in another format (json),
and the way the user expects it is a third format (visualization)

APIs are in charge of this conversion.

https://gamma.app/?utm_source=made-with-gamma

Next Step: Containerize

Containerization solves the "it works on my machine" problem by packaging your entire application environment into a portable, reproducible unit.

system information
FROM python:3.11-slim
RUN apt update && \
 apt install --no-install-recommends -y build-essential gcc git && \
 apt clean && rm -rf /var/lib/apt/lists/*

RUN mkdir /app
WORKDIR /app

Include relevant files
COPY requirements.txt /app/requirements.txt
COPY pyproject.toml /app/pyproject.toml
COPY src/ /app/src

Install dependencies
RUN pip install .

Execution statement
EXPOSE $PORT
CMD exec uvicorn src.example_mlops.app:app --host 0.0.0.0 --port $PORT

https://gamma.app/?utm_source=made-with-gamma

Side step: The Road to Modern Deployment

Deployment technology has undergone a significant evolution, driven by the need for greater efficiency, flexibility, and scalability. This journey
highlights key innovations that transformed how we manage and run applications.

Physical Servers
Dedicated hardware,
manual provisioning

Virtual Machines
Hypervisors enable

multi-tenant hosting

Containers
Lightweight, portable
application packaging

Kubernetes
Orchestrated, scalable
platform for compute

https://gamma.app/?utm_source=made-with-gamma

Deployment Types

Ì Batch Inference

Process large volumes of data at
scheduled intervals. Ideal for high

throughput, high latency applications
like recommendation systems or data

pipelines.

Ì Stream Processing

Continuous processing of data streams
in real-time. Perfect for LLM

applications, chat interfaces, and
scenarios requiring progressive output

generation.

Ì Request-Response

Synchronous predictions for individual
requests. The standard pattern for web

services, APIs, and most real-time
applications requiring immediate results.

Ì Edge Deployment

Models running directly on end-user
devices. Essential for applications

requiring low latency, offline capability,
or data privacy (IoT, mobile apps).

https://gamma.app/?utm_source=made-with-gamma

Cloud Deployments

AWS SageMaker Google Vertex AI Azure ML

[1] https://artificialanalysis.ai/

https://artificialanalysis.ai/
https://gamma.app/?utm_source=made-with-gamma

Where should I run my stuff?

https://gamma.app/?utm_source=made-with-gamma

Final step: Deployment Strategies

Shadow Mode

Deploy the new model alongside
the old one, logging its
predictions for comparison
without serving them to users.
Ideal for risk-averse validation.

Canary Release

Roll out the new model to a small
percentage of users (e.g., 5%)
and monitor closely before
gradually increasing traffic.
Perfect for controlled,
incremental deployment.

A/B Testing

Serve different model versions
to randomized user groups to
directly compare their impact on
business metrics. Best for
quantifying performance
differences.

https://gamma.app/?utm_source=made-with-gamma

Monolith vs. Microservices: Architectural Choices

Monolithic Architecture
Pros:

Simpler initial development
and deployment

Easier debugging in one
codebase

Cons:

Hard to scale components
independently

Slower development with
growth

Higher risk of system-wide
failures

Microservices Architecture
Pros:

Independent deployment and
scaling

Increased resilience and fault
isolation

Enables diverse tech stacks

Cons:

Increased operational complexity

Distributed data management
challenges

Robust inter-service
communication needed

https://gamma.app/?utm_source=made-with-gamma

Beyond the Model: Essential Deployment Components

API Gateway

Acts as a single entry point for all API calls, handling
routing, security, and traffic management before requests
reach your model endpoints.

Authentication

Secures access to your model, verifying user or service
identities to prevent unauthorized use and protect
sensitive data.

Autoscaler

Dynamically adjusts computing resources (e.g., number of
model instances) based on real-time demand, ensuring
performance and cost efficiency.

Database

Stores model inputs, outputs, monitoring data, and feature
stores, crucial for logging, auditing, and continuous model
improvement.

https://gamma.app/?utm_source=made-with-gamma

Real life example by Petr Taborsky

https://gamma.app/?utm_source=made-with-gamma

Real life example by Petr Taborsky

AMQP RabbitMQ: Message broker for incoming data.

Processing Servers: Perform initial data processing.

Data Processing Logic: Formats data for the AI model.

AI inference: Generates predictions using the trained AI model.

AI learning: Trains the AI model using data from PostgreSQL and MongoDB.

https://gamma.app/?utm_source=made-with-gamma

Exercise: Choosing the Right Infrastructure

Your team has built an AI-powered image captioning service. It currently runs on a single GPU virtual machine, which performs well
for limited traffic. After a successful marketing campaign, usage spikes to thousands of image requests per minute. Response times
increase, and costs stay high because the GPU VM runs continuously, even when idle.

Group Task

Open the Excalidraw link (backup and press "Replace my content" if needed) and invite your group members to a collaborative
session. In your group, discuss and map out a new improved infrastructure that handles the above scenario.

Excalidraw

Excalidraw 4 Collaborative whiteboarding made easy
Excalidraw is a virtual collaborative whiteboard tool that lets you easily
sketch diagrams that have a hand-drawn feel to them.

https://excalidraw.com/
https://gamma.app/?utm_source=made-with-gamma

Taking a step back

We often think prediction == decision in automated systems. However, in the real world, human judgment often plays a critical role, leading
to different deployment paradigms.

Human-in-
the-Loop

Fully
Automated

High throughput

Continuous operation

Slower, safer

Human oversight

https://gamma.app/?utm_source=made-with-gamma

Conveying information is hard&.

https://gamma.app/?utm_source=made-with-gamma

Same model. Different decisions.

A single machine learning model can produce various types of output, each influencing how decision-makers perceive and act upon the information.

Regression

Predicted demand: 87 units (±12)

Focuses on numerical prediction with a confidence interval.

Forecast

Sales curve over 6 months with 80% confidence band

Highlights future trends and associated uncertainty.

Classification

Fraud risk: 72%

Provides a probability score for a specific category or outcome.

Generation

Text summary of medical note

Creates new content, often synthesizing complex information.

What should we show to the decision maker? The number, the uncertainty, or the narrative?

The form of model output changes how people and systems act.

https://gamma.app/?utm_source=made-with-gamma

Different Models, Different Communication Strategies

Model Type Typical Output Presentation Options Decision Implications

Classification Discrete label / probabilities Top class, top-k, probability dist. Hides or exposes uncertainty

Regression Continuous value Point estimate, interval,
distribution

Affects perceived precision

Forecasting Time series of future values Mean, confidence band, scenarios Influences planning & buffers

Ranking / Recommendation Ordered list Top-N items, scores, rationale Changes exposure or fairness

Clustering / Embedding Group assignments, latent vectors Cluster labels, visual map Changes interpretability

Generative Text, image, plan 1 sample vs multiple candidates Affects creativity vs. control

RL / Policy models Action suggestions Action, policy heatmap, reward
estimate

Determines autonomy of the
system

https://gamma.app/?utm_source=made-with-gamma

Summaries vs. Signals vs. Stories

The way model outputs are presented significantly influences how they are interpreted and acted upon by decision-
makers. Choosing the right representation is crucial for effective communication.

Representation Example Strength Risk

Summary <Demand = 87 units= Simple, fast
decisions

Ignores uncertainty

Signal <Demand = 87 ± 12, confidence
80%=

Transparent Slower, needs literacy

Story <Demand likely stable, but risk
of shortage in Q4=

Actionable context Requires human interpretation

https://gamma.app/?utm_source=made-with-gamma

Who Consumes the Output?

Information must fit the decision-maker.

Consumer Needs Example

Automated System Thresholded, numeric, fast <If P>0.8 ³ alert=

Operator / Analyst Confidence, visual trends <Show top 3 forecasts + uncertainty=

Executive / Policy Maker Scenarios, narratives <3 demand futures: optimistic, base,
conservative=

https://gamma.app/?utm_source=made-with-gamma

Discussion Exercise: "What Was the Model Really Saying?"
Scenario: A logistics company uses an AI model to predict the likelihood of delivery delays. The system outputs a probability score (e.g. 0.82) for each shipment, but the dashboard only

displays <Low / Medium / High Risk= labels based on fixed thresholds. One week, a large shipment labeled <Medium Risk= arrives five days late, causing major financial penalties. Later analysis

shows the model had actually estimated an 82% probability of delay 4 but the <Medium= category covered all predictions between 40% and 85%.

Think

Who made the critical error 4 the model, or the way it was presented?

What assumptions did users make about the label <Medium=?

Pair

How could this have been prevented through better presentation or interface design?

What information should the logistics manager have seen to make a sound decision?

When should we simplify model outputs, and when does that become dangerous?

Options to Debate: Who bears responsibility?

Data Scientist

For not calibrating thresholds or explaining probabilities clearly?

Product Designer

For oversimplifying model outputs for the dashboard?

Operations Manager

For acting on vague categories without question?

Company Leadership

For prioritizing simplicity over accuracy?

https://gamma.app/?utm_source=made-with-gamma

"A decision you can9t explain today becomes a liability tomorrow."

Machine learning decisions don9t end when predictions are made 4 they live on in audits, reviews, and accountability.

What Why it matters How to enable it

Decision traceability You need to reconstruct what was
predicted, by which version, with
what data.

Keep versioned model logs, data
lineage, and config history.

Interpretability record You must justify why a model made a
given prediction.

Store feature attributions or SHAP
values per inference.

Human3AI decision logs You must understand who acted on
what, and how.

Record user actions, thresholds, and
overrides linked to model outputs.

https://gamma.app/?utm_source=made-with-gamma

Deployment trace

Input Data

Raw information for the prediction.

Model v2.3

Trained on 2025-09 data.

Prediction

0.78 probability of risk.

Dashboard Threshold

0.7 defined as "High Risk."

Manager Action

Approved intervention based on classification.

Outcome

Potential failure successfully avoided.

https://gamma.app/?utm_source=made-with-gamma

Before deploying, ask:
01

Who is the output for 4 system,
analyst, or executive?

02

Is uncertainty visible and
interpretable?

03

Should we present multiple
scenarios, not one number?

04

What9s the latency vs. interpretability trade-off?

05

How will decisions be audited or explained later?

[Model Computation] ³ [Information Representation] ³ [Decision Context] ³ [Outcome]

https://gamma.app/?utm_source=made-with-gamma

Exercise: Automation vs Human Oversight in AI Operations

Your company has deployed an AI model that detects skin cancer from medical images. The system automatically ingests new data, retrains weekly,
and redeploys models whenever performance metrics improve. After several months, doctors report that the model is missing rare cancer types - but

the monitoring dashboard still shows <healthy= performance. You suspect that automation worked as designed, but without human auditing, key
issues went unnoticed.

Group Task

Open the Excalidraw link (backup and press "Replace my content" if needed) and invite your group members to a collaborative session. In your group,
complete a monitoring and auditing loop by placing actors - either automated systems or humans - at key checkpoints in the AI lifecycle. They9ll

decide who does what and where human oversight adds value.

Excalidraw
Excalidraw 4 Collaborative whiteboarding made easy
Excalidraw is a virtual collaborative whiteboard tool that lets you easily
sketch diagrams that have a hand-drawn feel to them.

https://excalidraw.com/
https://gamma.app/?utm_source=made-with-gamma

Meme of the day

https://gamma.app/?utm_source=made-with-gamma

