
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3246  | https://doi.org/10.1038/s41598-021-81844-x

www.nature.com/scientificreports

Developing and validating 
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from a bi‑national European cohort 
of 5594 patients
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Stephan Lorenzen2, Raghavendra Selvan2, Janne Petersen11,12,15, Martin Erik Nyeland1, 
Mikkel Zöllner Ankarfeldt11,15, Gert Mehl Virenfeldt11, Matilde Winther‑Jensen11, 
Allan Linneberg11, Mostafa Mehdipour Ghazi2, Nicki Detlefsen2,3, Andreas David Lauritzen2, 
Abraham George Smith2, Marleen de Bruijne2,14, Bulat Ibragimov2, Jens Petersen2, 
Martin Lillholm2, Jon Middleton2, Stine Hasling Mogensen4, Hans‑Christian Thorsen‑Meyer5, 
Anders Perner5, Marie Helleberg6, Benjamin Skov Kaas‑Hansen7, Mikkel Bonde10, 
Alexander Bonde9,10, Akshay Pai2,8, Mads Nielsen2 & Martin Sillesen9,10,13*

Patients with severe COVID‑19 have overwhelmed healthcare systems worldwide. We hypothesized 
that machine learning (ML) models could be used to predict risks at different stages of management 
and thereby provide insights into drivers and prognostic markers of disease progression and death. 
From a cohort of approx. 2.6 million citizens in Denmark, SARS‑CoV‑2 PCR tests were performed on 
subjects suspected for COVID‑19 disease; 3944 cases had at least one positive test and were subjected 
to further analysis. SARS‑CoV‑2 positive cases from the United Kingdom Biobank was used for 
external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—
Area Under the Curve, ROC‑AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at 
Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and 
ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass 
index and hypertension, although the top risk features shifted towards markers of shock and organ 
dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality 
prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify 
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drivers of progression to more severe disease and for prognostication patients in patients with COVID‑
19. We provide access to an online risk calculator based on these findings.

The COVID-19 pandemic has put severe strains on hospital systems around the world and as of October 1st, 
2020, the World Health Organization (WHO) estimated that more than 34 million patients are affected world-
wide, and that the pandemic is the direct cause of more than 1 million deaths—a number that will likely rise as 
the pandemic progress.

The unknown clinical features coupled with the speed of viral spreading creates an unfortunate situation 
where health care providers are lacking important diagnostic adjuncts, such as accurate prediction models and 
data-driven insights into the drivers of disease progression. Such data-driven tools are not only pivotal for health 
care providers in terms of risk prediction. They would also serve an important role for policy makers in terms of 
resource allocation strategies. Finally, with the emergence of vaccines with limited initial availability, such tools 
could assist in identifying high-risk patients for first-tier vaccination efforts.

Several studies have now proposed prediction models based on a variety of clinical  features1–3, indicating good 
predictive ability of machine learning (ML) models, including combinations of Support Vector Machines, Logistic 
Regression, Gradient Boosted Decision trees, Neural Networks and Random Forests, on mortality  prediction3,4. 
Tasks such as respiratory  decompensation5, X-ray and clinical feature  detection6,7 and SARS-CoV-2 detection 
 optimisation8,9 have also been addressed. The majority of these are, however, trained and validated on national 
datasets from hospital admitted COVID-19 patients. While these may be of local value, whether the classification 
ability transfers to other healthcare systems is questionable.

As such, a recent review of ML  models10, aimed at risk prediction in SARS-CoV-2 positive patients found that 
the majority of studies were constructed on Chinese data with a high risk of bias as assessed by the Prediction 
model Risk of Bias Assessment tool (PROBAST)11. Furthermore, models often utilize data from hospital admitted 
SARS-CoV-2 positive patients  only3, which may skew results due to the lack of data from patients with milder 
disease trajectories. Finally, models are often developed for predictions at hospital  admission1–3, providing little 
insight into the effects of in-hospital management.

This, in turn, hinders identification of optimal biomarkers and prognostic features of adverse outcomes, as 
these may change as the patient advance through the trajectory of the disease and the objective of this study was 
thus to construct and validate an ML model for SARS-CoV-2 adverse outcome risk prediction on a European 
dataset from Denmark, with external validation in a United Kingdom (UK) dataset. Secondly, we sought to use 
the constructed models for identification of disease risk factors, including comorbidities, biomarkers and vital 
signs as the patient moves through the disease trajectory, thus enabling the identification of important clinical 
predictors of adverse outcomes at four timepoints or timeframes, based on accumulating available data: On 
diagnoses, on hospital admission (where applicable) and immediately before and after admission to the intensive 
care unit (ICU9), where applicable. Finally, we sought to create an online prediction tool to support rapid risk 
assessment upon COVID-19 diagnosis based on the most relevant data points.

We hypothesized that ML could be leveraged to provide accurate outcome predictions for COVID-19 patients, 
and that including accumulating data points from available sources from Electronic Health Record (EHR) 
repositories in a combined model could could improve risk prediction as well as identification of relevant disease 
drivers at specific time points.

Methods
All methods were carried out in accordance with relevant guidelines and regulations. The study was approved by 
the relevant legal and ethics boards, including the Danish Patient Safety Authority (Styrelsen for Patientsikkerhed, 
approval #31-1521-257) and the Danish Data Protection Agency (Datatilsynet, approval #P-2020-320) as well as 
the UK Biobank (Application ID #60861) COVID-19 cohort. Under Danish law, approval from these agencies are 
required for access to and handling of patient sensitive data, including EHR records, whereas legal approval for 
the study was furthermore obtained from the Danish Capital Region (Region Hovedstaden). Patients from the 
UK biobank have provided informed consent prior to enrolment in the biobank. Under Danish law, informed 
consent for patient chart access for research purposes can be waived, provided approval from the Danish Patient 
Safety Authority (see approval number above) is obtained prior to data access.

We conducted a prospective study by including all individuals undergoing a SARS-CoV-2 test (nasal and/or 
pharyngeal swap subjected to Real-Time Polymerase Chain Reaction testing) in the Capital and Zealand Regions 
(approximately 2.6 million citizens) of Denmark between March 1st, 2020 and June 16th 2020. Data inclusion was 
censored on June 16th. Patients were identified through their Central Person Registry (CPR) number, a unique 
numerical combination given to every Danish citizen, enabling linking of electronic health records (EHRs) with 
nationwide medical registry data.

During the study period, all SARS-CoV-2 tests were performed at regional hospitals, with patients referred 
for testing based on presence of symptoms albeit test strategies shifted towards the end of the inclusion period 
to include a wider screening indication.

For cases with at least one positive tests, we extracted data from the bi-regional EHR system, including demo-
graphics, comorbidities and prescription medication. In-hospital data included laboratory results and vital signs.

Supplementary Table S1 lists extracted comorbidities with their definitions, Supplementary Table S2 extracted 
laboratory values, and Supplementary Table S3 extracted temporal features (vital signs).

For the purpose of external validation of the ML models, we extracted data from the UK biobank COVID-19 
cohort. The UK biobank contains detailed healthcare information on 500.000 UK citizens, of which 1650 have 
been tested SARS-CoV-2 positive. This cohort has recently been made available for the purpose of COVID-19 
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research by the UK biobank  consortium12, and contain COVID-19 diagnostic test data, in hospital data as well 
as general practitioner data. For further information on the UK biobank COVID-19 cohort, please see Ref.13.

The rationale behind choosing the UK biobank dataset as an external validation cohort was primarily the 
need for model validation on an international dataset from a comparable health care system. The specific choice 
of the UK biobank was due to the curated and high-quality nature of this dataset, encompassing data from 
500.000 UK citizens.

Prediction models. ML models were trained and validated on the Danish dataset. A subset of models 
sharing identical data fields (e.g. age, comorbidities etc.) between the Danish and UK cohorts were subsequently 
externally validated on the UK biobank dataset.

We constructed ML prediction models by including available data for patients up to and including the selected 
time frames or time points. These time frames or points were.

• At time of SARS-CoV-2 positivity (all patients, Diagnosis model)
• The first 12 h of hospital admission (Admission model)
• 12 h up to ICU admission (Pre-ICU model)
• 12 h after ICU admission (Post-ICU model).

Models were trained to predict one of four events, where applicable:

• Hospital admission (SARS-CoV-2 positive patients)
• ICU admission (Diagnosed and hospital admitted patients)
• Mechanical ventilation (Diagnosed, hospital and ICU admitted patients)
• Death (all patients)

For each task, we trained with different feature sets to study how incrementally adding data affects model 
performance as well as to gain insight into drivers of disease progression:

• Base models: Age, sex and body mass index (BMI).
• Comorbidities: Base model and comorbidities (Table 1 and Supplementary Table S1)
• Temporal features: Comorbidities model and temporal features (Supplementary Table S3)
• In-hospital laboratory tests: Temporal features model and in-hospital lab tests (Supplementary Table S2).

For the purpose of external validation, data points were available in the UK biobank matching those of the 
base and comorbidities models. In-hospital models could not be externally validated due to lack of availability 
of these data points in the UK biobank.

ML models. We used random forests (RFs)14, implemented in the open-source machine learning library 
scikit-learn15. Because each individual tree was trained on a bootstrap sample, there were out-of-bag (OOB) 
samples from the training data that could be used to estimate the performance of the RF, a method considered 
superior to nested cross-validation16.

All models were evaluated on the Danish set using fivefold cross-validation. The folds were stratified to ensure 
that the splits were representative of the full cohort. For each split, we conducted grid search on the available 
training data fold to tune the hyperparameters of the RF models for each prediction task. As selection criterion, 
we computed the Receiver Operating Characteristics Area Under the Curve (ROC-AUC) on the OOB samples. 
Each model used a 1000 decision trees, while we varied the maximum number of features considered in each split 
(all features or square root of all features) and either the maximum depth (5, 10 or unlimited) or the minimum 
samples for a split (2, 5 or 10).For the full model evaluation, we combine the outputs for all test folds resulting in 
predictions for the entire data set on which we report the ROC-AUC and the precision/recall AUC (PR-AUC).

For evaluation on the UK data, models were trained on the entire Danish data set. As before, for each model, 
a grid search based on the OOB ROC-AUC was performed on the same parameter grid. Each model was then 
evaluated on the entire UK cohort.

For each task, we also applied standard logistic regression as a baseline model, but leave out the results here, 
since logistic regression exhibited sub-par or equal performance compared to the RF in most cases, the only 
exception being prediction of death when not including in-hospital tests.

 Post-hoc analysis of the use of the predictive variables across all decision trees in the RF allowed us to derive 
a measure of feature importance. Feature importance was calculated by the mean decrease in impurity (MDI). 
This measure considers how often a feature is used when classifying the training data points and how well it 
splits the training data points when being used. The predictive variable importance was computed for the models 
trained on the entire data set. The top-10 or top-20 (depending on the model) were extracted and visualized. The 
correlations of these features were then computed across the entire dataset.

Missing data. Missing data was considered missing at random.
Percentages of available data in the Danish cohort are presented in supplementary Table S4. Missing values 

for BMI were imputed by using k-nearest neighbour imputation using age and  sex17, with k = 100. Other missing 
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data points were set to “not available” for the purpose of ML modelling and deleted by case wise deletion for 
group comparisons.

Data presentation and statistical testing. Continuous data is presented as medians (interquartile 
range) and compared using the Mann–Whitney U test. Categorical data is presented as percentages and com-
pared using the Chi-square test.

ML model performances are presented as ROC-AUC for Positive and Negative predictive value and precision/
recall. Model comparisons were performed by the deLong  test18.

The p-values for comparisons of outcome groups are provided for reference only. As these comparisons are 
not part of the study hypotheses, p values are presented without post-hoc correction for multiple testing and 
should be interpreted as such.

In addition, calibration curves are presented for the combined test folds and the external validation data. For 
each calibration plot, the predictions were grouped using quantile-based binning.

Online models. The risk prediction model for SARS-CoV-2 positive patients admitted to hospital is avail-
able in an online version on https ://cope.scien ce.ku.dk.

Results
A total of 3944 individuals had at least one positive SARS-CoV-2 test in the two Danish regions and were included 
in the study. These were supplemented by the 1650 patients from the UK biobank used for external model valida-
tion. Figure 1 depicts patient identification and selection in a flowchart form for the Danish cohort.

Among the Danish cases, 1359 (34.5%) required hospitalization, and 181 (4.6%) intensive care. A total of 
324 patients (8.2%) died.

Table 1.  Demographic information on the group of SARS-CoV-2 positive patients, including information 
on pre-existing comorbidities. Supplementary Table S2 holds information on diagnoses codes included in the 
individual comorbidity classifications. The table presents information on the full cohort (admitted and non-
admitted SARS-CoV-2 positive patients) as well as subgroups admitted to a hospital and Intensive Care Unit 
(ICU) respectively. Furthermore, differential demographics between survivors and non-survivors (in-hospital 
mortality) is presented. Continuous variables are presented as medians with (interquartile range). COPD 
chronic obstructive pulmonary disease. **p < 0.001 when subgroups are compared (e.g. hospitalized vs. non-
hospitalized, ICU vs. non-ICU, survivors vs. non-survivors).

All SARS-CoV-2 
patients (n = 3944)

Non-hospitalized 
(n = 2585)

Hospitalized 
patients (n = 1359)

Hospitalized 
patients without 
ICU admission 
(n = 1178)

Hospitalized 
patients with ICU 
admission (n = 181) Survivors (n = 3620)

Non-survivors 
(n = 324)

Body Mass Index 25.9 (22.7–29.8) 25.8 (22.6–29.7) 26.0 (22.7–29.9) 25.7 (22.6–29.4) 27.3 (23.5–31.4) 26.0 (22.7–29.9) 25.2 (22.0–28.8)

Age 53.0 (36.0–69.0) 44.0 (31.0–58.0) 70.0 (55.0–80.0)** 71.0 (54.0–81.0) 69.0 (58.0–75.0) 50.0 (34.0–64.0) 81.0 (73.0–87.0)**

Male Sex 41.9 35.6 53.9** 51.4 70.2** 40.6 56.2**

Diabetes 13.4 8.0 23.5** 23.4 24.3 12.0 28.7**

Ischemic heart 
disease 9.1 5.2 16.5** 16.0 19.3 8.0 21.0**

Heart failure 4.2 1.5 9.4** 9.5 8.8 3.1 16.7**

Arrhythmia 10.4 4.9 20.9** 21.0 20.4 8.5 32.1**

Stroke 6.7 3.1 13.5** 14.1 9.9 5.7 17.9**

COPD or asthma 11.4 9.2 15.7** 15.4 17.1 10.9 17.0**

Sleep apnoea 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Arthritis 1.6 1.4 2.2 2.1 2.8 1.5 3.1

Osteoporosis 6.0 2.9 12.1** 12.0 12.7 4.9 18.5**

Dementia 2.9 1.3 5.9** 6.7 0.6** 1.8 14.8**

Severe mental 
disorder 1.7 1.5 2.0 2.1 1.1 1.5 4.3**

Immunodeficiencies 0.4 0.3 0.5 0.5 0.6 0.4 0.6

Neurological mani-
festations 18.1 15.0 24.1** 25.1 17.1 16.8 33.0**

Cancer 10.3 6.3 18.0** 17.8 18.8 8.8 27.5**

Chronic kidney 
failure 2.4 0.7 5.7** 5.6 6.6 1.8 9.6**

Dialysis 0.5 0.1 1.3** 1.3 1.1 0.4 1.5

Hypertension 30.1 18.3 52.5** 48.6 78.5** 27.0 65.1**

https://cope.science.ku.dk
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Figure 1.  Flowchart of patient selection and identification for the Danish cohort. ICU intensive care unit.

Table 2.  Temporal features (laboratory tests and vital signs). The table presents information on the full cohort 
(admitted and non-admitted SARS-CoV-2 positive patients) as well as subgroups admitted to a hospital 
and Intensive Care Unit (ICU) respectively. Furthermore, differential temporal features between survivors 
and non-survivors (in-hospital mortality) is presented. Continuous variables are presented as medians with 
(interquartile range). **p < 0.001 when subgroups are compared (e.g. hospitalized vs. non-hospitalized, ICU vs. 
non-ICU, survivors vs. non-survivors).

Unit
All SARS-CoV-2 
patients (n = 3944)

Non-hospitalized 
(n = 2585)

Hospitalized 
patients (n = 1359)

Hospitalized 
patients without 
ICU admission 
(n = 1178)

Hospitalized 
patients with 
ICU admission 
(n = 181)

Survivors 
(n = 3620)

Non-survivors 
(n = 324)

CRP mg/l 65.0 (29.0–122.0) 21.0 (8.7–46.5) 66.0 (30.0–124.0)** 58.0 (26.0–110.0) 142.0 (86.8–
231.0)** 59.5 (24.3–119.0) 79.5 (42.0–160.0)**

Lymphocyte count 109/l 0.9 (0.6–1.4) 1.2 (0.8–1.7) 0.9 (0.6–1.3)** 10.0 (0.7–1.4) 0.8 (0.5–1.1) 1.0 (0.7–1.4) 0.8 (0.6–1.1)**

Lactic dehydro-
genase U/l 274.5 (210.0–376.8) 215.5 (176.5–234.3) 277.5 (214.0–

381.5)** 263.0 (206.0–342.5) 430.0 (323.0–
579.0)**

272.0 (207.0–
366.5)

292.0 (226.0–
411.5)**

Alanine ami-
notransferase U/l 27.0 (18.0–45.0) 26.0 (17.5–35.0) 27.5 (18.0–46.0)** 26.0 (18.0–43.0) 36.0 (23.3–62.0)** 28.0 (19.0–46.3) 25.0 (17.0–41.0)**

Hemoglobin mmol/l 8.0 (7.1–8.7) 8.3 (7.6–8.9) 8.0 (7.1–8.7)** 8.0 (7.1–8.8) 7.6 (6.9–8.4) 8.1 (7.2–8.8) 7.7 (6.7–8.4)**

White blood cells 109/l 6.8 (5.1–9.4) 6.3 (4.7–7.3) 6.8 (5.1–9.5)** 6.8 (5.1–9.3) 7.9 (5.3–10.6) 6.7 (5.0–9.0) 7.4 (5.6–10.7)**

Neutrophil count 109/l 5.0 (3.5–7.4) 4.15 (3.3–5.2) 5.0 (3.5–7.5)** 4.9 (3.5–7.1) 6.1 (4.2–8.8) 4.8 (3.4–6.9) 5.7 (4.1–8.7)**

D dimer mg/l 1.0 (0.6–2.4) 0.7 (0.7–1.9) 1.0 (0.6–2.4)** 0.9 (0.5–2.1) 1.4 (0.8–4.3)** 0.9 (0.5–2.1) 1.8 (0.8–4.4)**

Blood urea nitrogen mmol/l 6.3 (4.3–9.9) 4.3 (3.8–6.7) 6.4 (4.4–10.0)** 6.3 (4.4–9.9) 6.8 (5.1–10.8) 5.7 (4.1–8.4) 9.8 (6.8–14.8)**

Creatinine umol/l 81.5 (65.6–108.0) 67.0 (58.0–85.0) 83.0 (65.0–109.0)** 82.0 (65.0–107.0) 85.5 (67.0–111.3) 79.0 (63.0–100.0) 99.0 (75.6–149.0)**

Ferritin ug/l 557.0 (203.0–
1125.0) 167.0 (99.0–613.0) 570.0 (219.5–

1145.0)** 399.0 (176.3–913.3) 1100.0 (741.0–
1910.0)**

516.0 (204.0–
1140.0)

649.0 (201.0–
1110.0)**

Base excess mmol/l 0.8 (− 1.4–3.0) 0.3 (− 0.9–2.7) 0.8 (− 1.4–3.1)** 0.7 (− 1.4–3.0) 1.0 (− 1.7–3.6) 0.8 (− 1.1–3.1) 0.6 (− 2.8–3.0)

HCO3 mEQ/l 25.2 (23.6–27.0) 25.0 (24.3–26.8) 25.2 (23.6–27.0)** 25.2 (23.6–26.9) 25.4 (23.6–27.4)** 25.3 (24.0–27.0) 24.9 (22.2–27.0)**

Lactate mmol/l 1.1 (0.8–1.5) 1.2 (0.8–1.8) 1.1 (0.8–1.5)** 1.0 (0.8–1.5) 1.3 (1.0–1.7)** 1.0 (0.8–1.4) 1.3 (0.9–1.7)**

Arterial  O2 satura-
tion % 0.94 (0.92–0.99) 0.95 (0.92–0.97) 0.94 (0.92–0.97)** 0.95 (0.92–0.97) 0.92 (0.91–0.94)** 0.95 (0.92–0.97) 0.93 (0.92–0.96)**

pCO2 mmHg 4.6 (4.1–5.1) 4.7 (4.4–5.0) 4.6 (4.1–5.1)** 4.6 (4.1–5.1) 4.7 (4.1–5.2)** 4.6 (4.1–5.1) 4.7 (4.0–5.2)**

pH – 7.46 (7.43–7.49) 7.47 (7.43–7.49) 7.46 (7.43–7.49)** 7.46 (7.43–7.49) 7.47 (7.42–7.49)** 7.47 (7.43–7.49) 7.45 (7.41–7.49)**

pO2 mmHg 9.1 (8.0–10.9) 10.0 (7.9–10.7) 9.1 (8.0–10.9)** 9.4 (8.2–11.1) 8.3 (7.5–9.6)** 9.3 (8.2–11.1) 8.8 (7.8–10.2)**

Pulse /min 83.0 (72.0–94.0) 86.0 (74.0–102.25) 83.0 (72.0–93.0)** 82.0 (71.0–92.0) 86.0 (76.0–97.0) 82.0 (72.0–93.0) 85.0 (72.8–98.3)**

Temperature C 37.4 (36.8–38.1) 37.3 (36.6–38.0) 37.4 (36.8–38.1)** 37.3 (36.8–38.0) 37.6 (37.1–38.3) 37.4 (36.8–38.1) 37.3 (36.7–38.0)**

Early warning score – 3.0 (2.0–6.0) 2.0 (1.0–4.0) 4.0 (2.0–6.0)** 3.0 (2.0–5.0) 6.0 (5.0–8.0)** 3.0 (2.0–5.0) 5.0 (3.0–6.0)**

Respiratory rate /min 20.0 (17.0–22.0) 18.0 (16.0–20.0) 20.0 (18.0–22.0)** 20.0 (17.0–21.0) 24.0 (20.0–30.0)** 20.0 (17.0–22.0) 20.0 (18.0–24.0)**

Saturation % 96.0 (94.0–98.0) 98.0 (96.5–99.0) 96.0 (94.0–97.0)** 96.0 (95.0–98.0) 94.0 (92.0–95.0) 96.0 (95.0–98.0) 95.0 (93.0–97.0)**

Is smoking  % 4.8 0.5 13.1** 12.1 19.3 3.4 21.3**
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Demographics and comorbidities are summarized in Table 1, selected laboratory values and vital signs in 
Table 2. Demographics information for the UK biobank external validation cohort is presented in supplementary 
Table S5.

When compared to non-hospitalized patients, hospital admitted patients were older and more likely to be 
male and a number of comorbidities were overrepresented in the admitted subgroup. These included hyperten-
sion, diabetes, ischemic heart disease, heart failure, arrythmias, stroke, chronic obstructive pulmonary disease 
(COPD) or asthma, osteoporosis, neurological disease, cancer, chronic kidney failure and use of dialysis. Hos-
pitalized patients were more likely to be smokers (Table 2).

For hospitalized patients requiring ICU admission vs. hospitalized patients without ICU admission, only male 
sex, Body Mass Index (BMI), dementia and hypertension differed between patients and ICU-admitted patients 
were furthermore more likely to be smokers, older and male (Table 1).

Non-survivors were furthermore more likely to suffer from hypertension, diabetes, ischemic heart disease, 
heart failure, arrythmias, stroke, COPD or asthma, osteoporosis, dementia, mental disorders, neurological dis-
ease, cancer, chronic kidney failure and use of dialysis.

When compared to non-admitted, admitted patients differed significantly in all measured values (Table 2). 
Among those hospitalised, those admitted to the ICU had derangements in many variables (Table 2). The same 
was observed for non-survivors compared with survivors (Table 2).

ML models prediction. ML models are presented in Table 3 and graphically depicted in supplementary 
Fig. S1 (Diagnosis model), Supplementary Fig. S2 (Admission model), Supplementary Fig. S3 (Pre-ICU model) 
and Supplementary Fig. S4 (Post-ICU model).

Base models deployed on the time of diagnosis were able to predict hospital admission with a ROC-AUC of 
0.820, ICU admission 0.802, ventilator treatment 0.815 and death 0.902 (Table 3 and Supplementary Fig. S1).

Adding information on patient comorbidities increased the predictive ability for all outcomes.
Models deployed at hospital admission achieved ROC-AUC scores ranging from 0.675 to 0.818 for the 

selected outcomes (Table 3 and Supplementary Fig. S2). Adding information on comorbidities, temporal features 

Table 3.  Main results from the prediction models. Predictions were performed with data available from 
four different time frames in the patient disease trajectories (left column): On diagnosis (Diagnoses model), 
On hospital admission and 12-h into admission (Admission model), 12 h leading up to Intensive Care Unit 
(ICU) admission (Pre-ICU model) and 12 h after ICU admission (post-ICU model). Models were trained 
to predict risk of hospital admission, ICU admission, ventilator treatment and death (top row). All models 
were trained with incremental data, starting with age, gender and Body Mass Index, then adding comorbidity 
information, temporal features (e.g. vital signs) and finally by adding hospital laboratory tests where applicable. 
Please see supplementary tables S1 and S2 for data definitions. Performance metrics are presented as the 
Receiver Operating Characteristics Area Under the Curve (ROC-AUC) for True/False positive rates (TPR/
FPR) and Precision/Recall (Pre/Rec). *Model is significantly (p < 0.01) better than the base prediction model 
(Age + gender + Body Mass Index, BMI). # Model is significantly (p < 0.01) better than the comorbidities model. 
§ Model is significantly (p < 0.01) better than the temporal model. --: Insufficient data available at the time point, 
or prediction irrelevant (e.g. predicting hospital admission for patients already in the ICU).

Hospital admission ICU admission Ventilator treatment Death

TPR/FPR Pre/Rec TPR/FPR Pre/Rec TPR/FPR Pre/Rec TPR/FPR Pre/Rec

Diagnosis

Age + Gender + BMI 0.820 0.705 0.802 0.173 0.815 0.184 0.902 0.412

+Comorbidities 0.822 0.705 0.844* 0.206 0.851* 0.192 0.906 0.412

+Temporal Features – – – – – – – –

+In-hospital Tests – – – – – – – –

Admission

Age + Gender + BMI – – 0.685 0.226 0.675 0.200 0.785 0.435

+Comorbidities – – 0.752* 0.282 0.743* 0.238 0.794 0.445

+Temporal Features – – 0.763* 0.308 0.762* 0.289 0.796 0.444

+In-hospital Tests – – 0.805*# 0.418 0.786* 0.345 0.818* 0.540

Pre-ICU

Age + Gender + BMI – – – – 0.598 0.892 0.733 0.575

+Comorbidities – – – – 0.567 0.869 0.735 0.548

+Temporal Features – – – – 0.563 0.871 0.738 0.567

+In-hospital Tests – – – – 0.502 0.867 0.721 0.567

Post-ICU

Age + Gender + BMI – – – – 0.598 0.892 0.733 0.575

+Comorbidities – – – – 0.530 0.843 0.724 0.552

+Temporal Features – – – – 0.584 0.861 0.739 0.569

+In-hospital Tests – – – – 0.671 0.928 0.741 0.568
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and hospital laboratory tests increased model performance for ICU admission, use of mechanical ventilation 
and death.

Models deployed pre- or post-ICU admission achieved ROC-AUC’s from 0.502 to 0.741 (Table 3 and Sup-
plementary Figs. S3 and S4).

The calibration curves (supplementary Figs. S7 and S8) show that the models are well calibrated when looking 
at all diagnosed subjects and at patients admitted to the hospital. When restricted to patients admitted to ICU, 
the calibration gets worse as expected due to smaller sample size. Ventilator treatment could not be predicted 
accurately, and the calibration curves reflect this.

External validation results (Supplementary Table S6) on UK data indicated an overall reduction in model 
classification ability. For diagnosed patients, ROC-AUCs were 0.661 for predicting hospital admission, 0.529 for 
predicting ICU admission and 0.742 for predicting mortality. Inspection of the calibration curves (Supplemen-
tary Fig. S7) shows that the models are only slightly worse calibrated for the UK data, meaning that the model 
outputs approximately the correct probability for individual patients, despite the degradation in ROC-AUC.

As patients progressed through the disease severity trajectories, mortality prediction remained in the area of 
0.617–0.722 (Supplementary Table S6).

Detection of important features and drivers of disease progression. Results of the drivers of dis-
ease progression feature detection analysis for each of the selected timepoints are depicted in Fig. 2 (diagnoses 
model) and Fig. 3 (admission model) as well as Supplementary Fig. S4 (pre-ICU model) and Supplementary 
Fig. S5 (post-ICU model).

For diagnosed patients (Fig. 2), age and BMI were among the most relevant features for all targets, and indeed 
the most important features for predicting hospital admission and ventilator treatment.

Hypertension was the most important feature for predicting ICU admission, and indeed an important feature 
for all models.

For admitted patients (Fig. 3) the most relevant drivers of disease progression were age, BMI, hypertension 
and the presence of dementia. When the full dataset was analysed, lab tests indicating aspects of cell dysfunc-
tion (Lactic dehydrogenase, LDH), kidney dysfunction (Blood urea nitrogen and Creatinine), the inflammatory 

Figure 2.  Feature importance for the basic (including age, sex, body mass index, and comorbidities) diagnosis 
models, predicting risk of intensive care admission (first row), hospital admission (second row), ventilator 
treatment (third row) and death (fourth row) on SARS-CoV-2 positivity.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3246  | https://doi.org/10.1038/s41598-021-81844-x

www.nature.com/scientificreports/

response (C-reactive protein, CRP), and liver damage (Alanine Aminotransferase, ALT) were identified as impor-
tant prognostic markers for disease progression.

For ICU models (Supplementary Figs. S5 and S6), relevant disease progression features again included age 
and BMI as well as comorbidities including hypertension, heart failure and neurological disease. When the 
full dataset was analysed, disease progression drivers included features reflecting insufficient respiration and 
metabolism (pulse oximetry oxygen saturation, pO2 values and slopes over time), as well as BUN and CRP levels.

Figure 3.  Feature importance for the basic (including age, sex, body mass index, and comorbidities) and 
advanced (all data) admission models, predicting risk of intensive care admission (first row), ventilator 
treatment (second row) and death (third row) on hospital admission.
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Discussion
In this study, we analyse prognostic and factors associated with disease progression in 3944 SARS-CoV-2 posi-
tive patients by constructing an interpretable ML framework. In contrast to previous  studies1,2, these included 
diagnosed patients outside hospitals, and thus included the entire spectrum of SARS-CoV-2 positive patients in 
the 2.6 million regional population.

Results indicate that by focusing on a limited number of demographic variables, including age, gender and 
BMI, it is possible to predict the risk of hospital and ICU admission, use of mechanical ventilation and death 
as early as at the time of diagnosis. Using these parameters only, our model achieved a ROC-AUC of 0.902 for 
mortality prediction, which is slightly inferior to a model reported by Gao et al. achieving a ROC-AUC of 0.962 
using more complex clinical data points on  admission3.

Adding information on comorbidities to the model increase performance, indicating that these features play 
a prognostic role in the outcome of patients as they progress through the disease trajectory.

As such, results from the ML feature detection indicate that comorbidity factors such as hypertension and 
diabetes are driving factors of adverse outcome, which is in line with reports from other cohort  studies19–21. The 
role of hypertension is further underlined by reports indicating a role of the angiotensin converting enzyme 
2 (ACE2) receptor as an entry point for the SARS-CoV222. Whether COVID-19 interacts unfavourably with 
hypertension per se, or whether this risk is simply a manifestation of reduced tolerance to severe infection and 
hypoxia is currently  debated23.

Furthermore, BMI was identified as a major feature of adverse outcome, as also reported by  others24–26. 
Whether this is due to a reduced respiratory capacity or chronic impairment of the immune system through 
alterations in tumour necrosis factor and interferon secretion associated with obesity, is also currently  debated27. 
Caution should, however, be taken when analysing these results, as the median observed differences between 
groups were minor and may not be clinically relevant. Furthermore, data imputation may have impacted on 
these results.

The addition of more data points, including temporal features and lab tests improved the model’s predictive 
value for hospitalized patients, with group comparisons indicating alterations of a plethora of laboratory tests 
for admitted patients, including features of immune activation and organ dysfunction. Interestingly, laboratory 
tests differed to a lesser extent between ICU and non-ICU patients, except for CRP levels, lymphocyte counts, 
LDH, ALT, neutrophil, D-dimer and ferritin levels as well as arterial blood gas values. As expected, ICU admitted 
patients had lower oxygen saturation and higher respiratory rates, likely reflecting the acute respiratory distress 
from COVID-19 pneumonia.

Feature analysis indicated that strong prognostic markers expectedly included CRP levels, but also markers 
of organ damage, including kidney injury (creatinine and blood urea nitrogen), liver injury (ALAT), cell damage 
(LDH), anaemia (haemoglobin levels) as well as ferritin levels. These, as well as vital signs and arterial blood gas 
values superseded many of the comorbidities in feature importance once the patient progressed through hospital 
and ICU admission, which again indicates that drivers and prognostic markers of adverse outcomes represent a 
dynamic field affected by the patient’s current point on the disease trajectory, and that differential values should 
be considered when risk-assessing COVID-19 patients depending on their current status (e.g. in hospital, in ICU 
etc.). A caveat is, however, that multiple comorbidities and advanced age may resulted in decisions by patients, 
relatives or clinicians limiting the use of life-support, and thus potentially precluding them from ICU admission 
and reducing the effect of comorbidities and age on model predictions.

Kidney injury has previously been reported in patients with COVID-1928,29 and our finding that markers of 
kidney injury may be important at hospital admission supports the notion that COVID-19 associated kidney 
injury plays an important pathophysiological role.

The importance of LDH for COVID-19 patients has previously been reported in other  ML1 as well as clinical 
 studies30 and these results are supported by the feature detection from this study, indicating that LDH levels serve 
as an important prognostic marker on hospital admission, although its value is superseded by other biomarkers 
when the patient advance to the ICU stage. As LDH can be seen as a general marker of cell and organ damage 
with a reported prognostic value for mortality in ICU  patients31, these findings likely indicate a general organ 
affection associated with COVID-19 disease progression.

Abnormal liver function tests, including ALAT, has previously been associated with COVID-19 disease 
 severity32 and these reports have indicated the presence of elevated liver enzymes in both severe and non-severe 
COVID-19  cases33. Whether this is a function of viral infection, shock or a consequence of hepatotoxic phar-
maceuticals deployed during treatment is still not  clear34.

Ferritin levels have previously been associated with COVID-1935, presumably due to its role in immunomodu-
lation and association with the cytokine storm response seen in critical  illness36.

Taken together, the feature importance of laboratory tests indicating affection of several organ systems indi-
cates that COVID-19 disease severity follows a predictable pattern characterized by multi-organ affection (albeit 
not always dysfunction), which is in line with previous  findings37.

Once patients progress to the ICU stage, feature detection indicated a switch towards vital signs and biomark-
ers indicating that the severity of respiratory failure, shock and inflammatory markers were the most important 
features of risk of death (Supplementary Figs. S5 and S6).

When the feature importance of all models is analysed, the results indicate that COVID-19 outcomes are at 
the time of diagnoses largely predictable through a relatively limited number of features, dominated by age, BMI 
and comorbidities, effectively proxies for frailty.

As patients follow their disease trajectories, differential features supersede each other in prognostic impor-
tance, and prognostic models should thus consider the patient’s place in the disease trajectory.
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The results of the external validation did, however, show an overall reduction in the model’s classification 
ability when the UK biobank cohort was analysed, thus impacting on the generalizability of the presented models, 
but results should be interpreted with caution.

As such, the UK cohort was assembled for the purpose of biobanking studies, and thus comprise a highly 
selected subset of patients, whereas the Danish cohort was population wide in the two analysed geographical 
regions. Demographic data also highlights differences in the two populations, including an age difference between 
groups. Actually, when predicting death for ICU patients, where demographics are similar, we do not observe a 
reduction in model performance.

The differences in results can be explained by the change of the underlying data distribution, demonstrating 
that caution should be exercised when evaluating whether ML models are useful for local health care practitioners 
if developed on other cohorts, especially when developed on early phase COVID-19 data. As such, significant 
variations in national factors such as isolation policies and triage for ICU and mechanical ventilation, popula-
tion demographics etc. may impact on results. This notion is supported by the finding that our model retained 
reasonable classification ability for mortality in UK patients, but failed to predict ICU admission risk.

These results could thus indicate that potential users of ML models for COVID-19 patients should carefully 
examine the generalizability of the training cohort and healthcare infrastructure where patients originated from 
and compare these with local features prior to model usage.

Our study has several limitations. The number of patients available for this analysis was limited, and additional 
patient data could change the results. This is especially evident when performing predictions in the ICU setting, 
where the number of patients was limited. A larger and preferably multinational dataset would be required to 
address this issue.

Secondly, we have extracted a subset of clinical variables from the EHR system and analysing other features 
could affect the model. Furthermore, the changing criteria for SARS-CoV-2 testing associated with the course 
of the pandemic, likely also affects the results.

For external validation, our results are limited by the fact the UK biobank data did not offer datapoints allow-
ing for external validation of advanced features models.

Even with these limitations, we may conclude that ML may be leveraged to perform outcome prediction in 
COVID-19 patients, as well as serve as a potential tool for identifying drivers and prognostic markers.

Data availability
Patient data from this study has not been made available to the public due to patient confidentiality constraints.
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