2206.15078v3 [cs.LG] 23 Aug 2022

arxXiv

Laplacian Autoencoders for
Learning Stochastic Representations

Marco Miani!, Frederik Warburg®,
Pablo Moreno-Muiioz, Nicke Skafte Detlefsen, Sgren Hauberg
{mmia, frwa, pabmo, nsde, sohau}@dtu.dk
Technical University of Denmark

https://github.com/FrederikWarburg/LaplaceAE

Abstract

Established methods for unsupervised representation learning such as variational
autoencoders produce none or poorly calibrated uncertainty estimates making it
difficult to evaluate if learned representations are stable and reliable. In this work,
we present a Bayesian autoencoder for unsupervised representation learning, which
is trained using a novel variational lower bound of the autoencoder evidence. This
is maximized using Monte Carlo EM with a variational distribution that takes
the shape of a Laplace approximation. We develop a new Hessian approximation
that scales linearly with data size allowing us to model high-dimensional data.
Empirically, we show that our Laplacian autoencoder estimates well-calibrated
uncertainties in both latent and output space. We demonstrate that this results in
improved performance across a multitude of downstream tasks.

1 Introduction

Unsupervised representation learning is a brittle matter. Consider the classic autoencoder (AE)
(Rumelhart et al., 1986), which compresses data x to a low-dimensional representation z from which
data is approximately reconstructed. The nonlinearity of the model implies that sometimes small
changes to data x give a large change in the latent representation z (and sometimes not). Likewise,
for some data, reconstructions are of low quality, while for others it is near perfect. Unfortunately,
the model does not have a built-in quantification of its uncertainty, and we cannot easily answer when
the representation is reliable and accurately reflects data.

The celebrated variational autoencoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014)
address this concern directly through an explicit likelihood model p(z|z) and a variational approxi-
mation of the representation posterior p(z|x). Both these distributions have parameters predicted by
neural networks that act similarly to the encoder—decoder pair of the classic autoencoder.

But is the VAE’s quantification of reliability reliable? To investigate, we fit a VAE with a two-
dimensional latent representation to the MNIST dataset (Lecun et al., 1998), and illustrate the predicted
uncertainty of p(x|z) in Fig. 1a. The model learns to assign high uncertainty to low-level image
features such as edges but predicts its smallest values far away from the data distribution. Not only
is such behavior counter-intuitive, but it is also suboptimal in terms of data likelihood (Sec. 1.1).
Retrospectively, this should not be surprising as the uncertainty levels away from the data are governed
by the extrapolatory behavior of the neural network determining p(a|z). This suggests that perhaps
uncertainty should be a derived quantity rather than a predicted one.

! Denotes equal contribution; author order determined by a simulated coin toss.

Preprint. Under review.

https://github.com/FrederikWarburg/LaplaceAE

Figure 1: 2D latent representation of MNIST overlaid a heatmap that describes the decoder uncertainty
(yellow/blue indicates a low/high variance of the reconstructions). To the right of the latent spaces,
we show the mean and variance of a reconstructed image (yellow indicates high values). (a) The VAE
learns to estimate high variance for low-level image features such as edges but fails at extrapolating
uncertainties away from training data. (b) Applying post-hoc Laplace to the AE setup shows much
better extrapolating capabilities, but fails in estimating calibrated uncertainties in output space. (c)
Our online, sampling-based optimization of a Laplacian autoencoder (LAE) gives well-behaved
uncertainties in both latent and output space.

From a Bayesian perspective, the natural solution is to form an (approximate) posterior over the
weights of the neural networks. To investigate, we adapt a state-of-the-art implementation of a
post-hoc Laplace approximation (Daxberger et al., 2021) of the weight posterior to the autoencoder
domain. This amounts to training a regular autoencoder, and thereafter approximating the weight
uncertainty with the Hessian of the loss (Sec. 1.1). Fig. 1b shows that uncertainty now grows, as
intuitively expected, with the distance to the data distribution, but there seems to be little semantic
structure in the uncertainty in output space. This suggests that while the post-hoc procedure is
computationally attractive it is too simplistic.

In this paper we introduce a new framework for Bayesian autoencoders in unsupervised represen-
tation learning. Our method takes inspiration from the Laplace approximation to build a variational
distribution on the neural network weights. We first propose a post-hoc LA for autoencoders; show-
casing good out-of-distribution detection capabilities, but lack of properly calibrated uncertainties
in-distribution. To address this, we develop a fast and memory-efficient Hessian approximation,
which allows us to maximize a variational lower bound using Monte Carlo EM, such that model
uncertainty is a key part of model training rather than estimated post-hoc. Fig. 1¢ gives an example
of the corresponding uncertainty, which exhibits a natural and semantically meaningful behavior.

1.1 Background

The VAE is a latent variable model that parametrize the data density p(x) = [p(z|z)p(z)dz
using a latent variable (representation) z. Here p(z) is a, usually standard normal, prior over the
representation, and p(x|z) is a likelihood with parameters predicted by a neural network.

The nonlinearity of the likelihood parameters renders the marginalization of z intractable, and
a variational lower bound of p(x) is considered instead. To arrive at this, one first introduces a
variational approximation ¢(z|x) ~ p(z|x) and write p(x) = Eq(z|a) [p(2]2)P(2) /g(2|2)]. A lower
bound on p(x) then follows by a direct application of Jensen’s inequality,

logp(z) > Lyas(x) = Ey(z2) log p(z|2)] — KL(g(z|2)(|p(2)). (D

If we momentarily assume that p(x|z) = N (z|u(z), 02 (2)), we see that optimally o (z) should be
as large as possible away from training data in order to increase p(x) on the training data (Appendix F).
Yet this is not the observed empirical behavior in Fig. 1a. Since the o network is left untrained away
from training data, its predictions depend on extrapolation. In practice, o2 takes fairly small values
near training data (assuming the mean g provides a reasonable data fit), and o2 extrapolates arbitrary
even if this is suboptimal in terms of data likelihood. Similar remarks hold for other likelihood
models p(x|z) and encoder distributions ¢(z|x): relying on neural network extrapolation to predict
uncertainty does not work.

The Laplace approximation (Laplace, 1774; MacKay, 1992) is an integral part of our proposed
solution. In the context of Bayesian neural networks, we seek the weight-posterior p(6|D)
exp(—L(D;0)), where 0 are network weights, D is the training data, and £ is the applied loss

P~ Ny, Sy) ¢~ N(ug,Sep)

Figure 2: Model overview. We learn a distribution over parameters such that we can sample encoders
ey and decoders dg. This allow us to compute the empirical mean and variance in both the latent
space z and the output space fg(,) = dg(ey(xn)).

function interpreted as an unnormalized log-posterior. This is generally intractable and Laplace’s
approximation (LA) amounts to a second-order Taylor expansion around a chosen weight vector 6*

1
logp(8|D) = L* + (0 —6%) VL + 5(ev —0")TV2L* (O -0")+ 06 -0 >) ()

where we use the short-hand £* = L(D;0*). The approximation, thus, assumes that p(6|D) is
Gaussian. Note that when 6* is a MAP estimate, the first order term vanishes and the second order
term is negative semi-definite. We provide more details on the Laplace approximation in Appendix B.
In practice, computing the full Hessian is too taxing both in terms of computation and memory, and
various approximations are applied (Sec. 3).

2 Laplacian Autoencoders

We consider unsupervised representation learning from i.i.d. data D = {z,,})_; consisting of
observations x,, € R”. We also define a continuous latent space such that representations z,, € RX .
Similar to AEs (Hinton and Salakhutdinov, 2006), we consider two neural networks e, : RPSRX
and dg: RE RP, widely known as the encoder and decoder. These have parameters 6 = {1, ¢}.
We refer to the composition of encoder and decoder as fg = dy, © €.

Model overview. The autoencoder network structure implies that we model the data as being
distributed on a K -dimensional manifold parametrized by 8. We then seek the distribution of the re-
construction ... = fo(x) given observation x, where the uncertainty comes from 6 being unknown,

P(Trec|z,) = Eo~p(o)z,f) [P(Trec| O, , f)]. 3)

Notice that we explicitly condition on f, which is the operator 8 — fg, even if this is not stochastic;
this conditioning will become important later on to distinguish between the distribution deduced
by f and its linearization f(*). Mimicking the standard autoencoder reconstruction loss, we set
P(Trec|0, T, f) =N (@rec|fo (), 1). Since p(0|x, f) is unknown, the reconstruction likelihood (3) is
intractable, and approximations are in order. Similar to Blundell et al. (2015), we resort to a Gaussian
approximation, but rather than learning the variance variationally, we opt for LA. This will allow
us to sample NNs and deduce uncertainties in both latent and output space as illustrated in Fig. 2.

Intractable joint distribution. Any meaningful approximate posterior over 8 should be similar to
the marginal of the joint distribution p(0, €|, f). This marginal is

POz, f) = B wp(a |z, [P(0Trec, 2, f)])
which can be bounded on a log-scale using Jensen’s inequality,
lng(eliE, f) 2 EQ = Emrecwp(mmm,f) [IOgP(e‘wrem Z, f)] (5)

Our first approximation is a LA of p(0|z, f) ~ ¢' (0|, f) = N'(0|0,, H;), where we postpone the
details on how to acquire 8; and H;. These will eventually be iteratively computed from the lower
bound (5); hence the ¢ index. Fig. 3 (a) illustrates the situation thus far: p(@|x, f) is approximately
Gaussian, but the non-linearity of f gives p(&re|®, f) a non-trivial density.

Linearization for gradient updates. Standard gradient-based learning can be viewed as a lineariza-
tion of f in @, i.e. for a loss £ = [(fg), the gradient is VoL = Jgfo VI(f), where Jg fo is the

PO, f) (0%, /)

Xyrec Xrec
P(Xeclx, 1)
A\ el £)
: | J "
--------- o%eec] 60.%, 1) o] 80,3, 1)
0: 2] 0: 2]
(a) Non linear f (b) Linear f®

Figure 3: Illustrative example for fixed x. The likelihood for a fixed 8, shown by the columns, are
assumed Gaussian p(ec|0:, , f) = N(fo,(x),1). We model the marginalised density p(@|z, f)
(first axis) over parameters @ with Gaussians. With the additional assumption of linear f then
P(@rec|x, f) (second axis) is Gaussian. This makes the joint distribution tractable.

Jacobian of f. In a similar spirit, we linearize f in @ in order to arrive at a tractable approximation of
P(Xrec|x, f). Specifically, we perform a Taylor expansion around 8

fo(x) = fo, () + Jofo,(x)(0 — 6,) +O (1|6 — 6.]°) (6)

=5 ()

where f(*) denote the associated first-order approximation of f. Under this approximation, the joint
distribution p(8, ,ec|x, f) becomes Gaussian, p(8, Trec|x, f1) ~ N (0, Trec| 11, £¢), with

_ 0t . H;l Jgfgt (:B)T)
Mt_(ﬁ?(@)’andzt_(Jefe,,(w) (ofo.(@) " Hdofo. () +1)

This approximation is illustrated in Fig. 3(b). We provide the proof in Appendix D.4.

Iterative learning. With these approximations we can readily develop an iterative learning scheme
which updates ¢(0|x,). The mean of this approximate posterior can be updated according to a
standard variational gradient step, 8,41 = 0, + AVgL,,., Where

['a:m = E’ONq" 8|z, f) [Ing(wrec|0, T, f(t))]a 3

is a lower bound on Eq. 3, which we evaluate with a single Monte Carlo sample. Following the LA,
the covariance of ¢'T1(8|x, f), should be the inverse of the Hessian of log p(8|zx, f) at 8;. Since
this is intractable, we instead compute the Hessian of the lower bound (5)

H;y1=-VaLe ’0t+1 :]Ep(mrec\m,f(‘)){_vz 1og p(@rec |60, @, f) =V log ¢ (6], f)}

©))

t+1
The last term can be approximated since V3 log ¢* (8|, f)|o=0,., = —H¢ + O ([|01+1 — 04])).

To efficiently cope with the O-term, we introduce a parameter «, such that the final approximation is

Ht+1 ~ (1 - O[)Ht +]Ep(wreclmvf) |:_vz logp (mrec|0, z, f(t)):| (10)

6141

.
= (1= a)H, ~ Jofy) V3 logp (el 01, /©) Jo Sy, (11

where Jg fét) is independent of which 6 we evaluate in and Vim logp (acrec ’0t+1, xz, f (t)) is trivial
to compute for common losses, i.e. for MSE it is the identity. The parameter « can be viewed
as a geometric running average that is useful for smoothing out results computed on a minibatch
instead of on the full training set, similar to momentum-like training procedures. It further allows for
non-monotonically-increasing precision. Note that we revisit data during training, and the precision

[F® = TAYLOR(F, 0;) t+=1
041 =0, + AEgqt [Vologp (Xiec | 0,%, f)]

qf,
T
9 N H = (- H = Jof) T V2 logp(xeecl, %, 1) Jo S

Figure 4: Iterative training procedure. Given a distribution q* over parameters, and a linearized
function f*), compute first and second-order derivatives to update the distribution on parameters.

t+=1

matrix is updated for every revisit. Thus, the forgetting induced by « is a wanted behavior to avoid
infinite precision in the limit of infinite training time. In practice, we set « equal to the learning rate,
where the practical intuition is that when « is small, the network uncertainty decreases faster.

The overall training procedure is summarized in Fig. 4. We initialize ¢° as a Gaussian with 8y = 0
and Hy = [. We provide more details on the model, the linearization, and iterative learning in
Appendix D.

Why not just...? The proposed training procedure may at first appear non-trivial, and it is
reasonable to wonder if existing methods could be applied to similar results. Variational inference
often achieves similar results to Laplace approximations, so could we use ‘Bayes by Backprop’
(Blundell et al., 2015) to get an alternative Gaussian approximate posterior over 8? Similar to the
supervised experiences of Jospin et al. (2020), we, unfortunately, found this approach too brittle to
allow for practical model fitting. But then perhaps a post-hoc LA as proposed by Daxberger et al.
(2021) for supervised learning? Empirically, we found it to be important to center the approximate
posterior around a point where the Hessian provides useful uncertainty estimates. Our online training
moves in this direction as the Hessian is part of the procedure, but this is not true for the post-hoc LA.

Conceptually, we argue that our approach, while novel, is not entirely separate from existing methods.
Our reliance on lower bounds makes the method an instance of variational inference (Jordan et al.,
1999; Opper and Archambeau, 2009b), and we maximize the bounds using Monte Carlo EM (Cappé,
2009). We rely on a LA as our choice of variational distribution, which has also been explored by
Park et al. (2019). Finally, we note that our linearization trick (6) has great similarities to classic
extended Kalman filtering (Gelb et al., 1974).

3 Scaling the Hessian to Large Images

The largest obstacle to apply LA in practice stems from the Hessian matrix. This matrix has a
quadratic memory complexity in the number of network parameters, which very quickly exceeds the
capabilities of available hardware. To counter this issue, several approximations have been proposed
(Ritter et al., 2018; Botev et al., 2017; Martens and Grosse, 2015b) that improve the scaling w.r.t. to
the number of parameters. The currently most efficient Hessian implementations (Dangel et al., 2020;
Daxberger et al., 2021) builds on the generalized Gauss-Newton (GGN) approximation of the Hessian

Vow L(fo(x)) = Jgw fo (@) - V2L (Fre) - Jow fo (), (12)

for a single layer [, which neglects second order derivatives of f w.r.t. the parameters. Besides,
the computational benefits of this approximations, previous works on LA (Daxberger et al., 2021)
relies on GGN to ensure that the Hessian is always semi-negative definite. In contrast, the model
presented in Sec. 2 implies that GGN is no longer a practical and unprincipled trick, but rather the
exact Hessian (Immer et al., 2021b).

Albeit relying on first order derivates, the layer-block-diagonal GGN, which assumes that layers are
independent of each other, scales quadratically with the output dimension of the considered neural
network f. This lack of scaling is particularly detrimental for convolutional layers as these have low
parameter counts, but potentially very high output dimensions.

Expanding Jy) fo(x) with the chain rule, one realizes that the Jacobian can be computed as a
function of the Jacobian of the next layer. Fig. 6 illustrate that an intermediate quantity M, which is
initialised as Vfcmﬁ(a}rec), can be efficiently backpropagated through multiplication with the Jacobian

APPROXIMATIONS | MEMORY TIME Table 1: Memory & time complexity
; of Hessian approximations. For an -
Block diag. O(R;w +W3) O<R§ +W2) layer network, let R,,=max;—q_ 1, |[2()],
KFAC O(RZ + W) O(R: + Wy) R.=) R2= | (l)|2 d
Exact diag. O(R2, +W,) O(R?+W,) =2 |z (l)|’ =2l : é?n
Approx. diag. (ours) | O(Ry, + W,) O(R, + W,) Ws=2l.|0 | Only our approximation
Mixed diag. (ours) O(Rp + W) O(Rs + W,) scales linearly with both the output

resolution and parameters.

= = = =
| l W M#0
W H+40
« J'MJ,
« JFMmJ,

(a) Block diagonal (b) Exact diagonal (c) Approx. diagonal (d) Mixed diagonal
Figure 5: Comparison of Hessian approximation methods. Common approximations (a—b) scale
quadratically with the output resolution. Our proposed approximate and mixed diagonal Hessians

(c—d) scale linearly with the resolution. This is essential for scaling the LAE to large images.

w.r.t. input of each layer. This process leads to a block diagonal approximation of the Hessian as
illustrated in Fig. 5(a). However, diagonal blocks are generally too large to store and invert. To
combat this, each block can be further approximated by its exact diagonal (Daxberger et al., 2021)
as depicted in Fig. 5(b). This scales linearly w.r.t. parameters, but still scales quadratically w.r.t. the

output resolution (Tab. 1). g
l

To scale our Laplacian autoencoder to high-dimensional

data, we propose to approximate the diagonal of the z(l_’:) 2 = fy, (x("”) ﬁﬁ)
Hessian rather than relying on exact computations. This is
achieved by only backpropagating a diagonal form of M MO MED = JT MO T 6 A O

as illustrated in Fig. 5(c). This assumes that features from
the same layer are uncorrelated and consequently have

linear complexity in both time and memory with respect -

to the output dimension (Tab. 1). This makes it viable for v
our model. Figure 6: Forward pass of feature map

: O]
We can further tailor this approximation to the autoencoder @ for layer I with parameters 6 and

setting by leveraging the bottleneck architecture. We note
that the quadratic scaling of the exact diagonal Hessian
is less of an issue in the layers near the bottleneck than

extended backward pass in which M is
backpropagated to previous layers. Via
the chain rule and M the Hessian of each
layer can be computed efficiently.

in the layers closer to the output space. We can therefore
dynamically switch between our approximate diagonal and the exact one, depending on the feature
dimension. This lessens the approximation error while remaining tractable in practice. We provide
more details on the fast hessian computations in Appendix E.

4 Related Work

Deep generative models, and particularly the family of variational auto-encoders (VAEs) (Kingma
and Welling, 2014; Rezende et al., 2014), address unsupervised representation learning from a
probabilistic viewpoint by approximating the posterior over the representation space. Despite their
widespread adoption, model parameters are still deterministic and sensitive to ill-suited local minima,
e.g. over-fitted to training data (Zhang et al., 2021), which may cause poor generalization. The
Bayesian NNs favour inference over the NN weights for addressing such issues (MacKay, 1995;
Neal, 1996). This approach deduces distributions on data space by learning posterior distributions on
the parameter space. However, several shortcomings (Wenzel et al., 2020), e.g. expensive training,

@ AppProx

o N ®

o) Exact
C)
=, KFAC
>
Sa == Block
5
Z 2
1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Input size Input size

Figure 7: Memory & time usage of Hessian approximations. The exact and KFAC scales poorly
with the image resolution. In contrast, our proposed approximate diagonal Hessian scales linearly.

tuning, and implementations, often limit their applicability to autoencoder-style models. Alternatively,
other methods such as deep ensembles (Lakshminarayanan et al., 2017), stochastic weight averaging
(SWAG) (Maddox et al., 2019) or Monte-Carlo dropout (Gal and Ghahramani, 2016) also promise
Bayesian approximations to NN weight’s posterior, but at the cost of increased training time, poor
empirical performance or limited Bayesian interpretation.

As demonstrated by Daxberger et al. (2021) LA is a scalable and well-behaved alternative to Bayesian
NNs if used post-hoc to approximate the intractable posterior over the weights after maximum-a-
posteriori (MAP) training in classification and regression. The general utility of LA has also motivated
its use as an approximation to the marginal likelihood over NN weights. Recent methods, including
Daxberger et al. (2021), have explored this path to find model hyperparameters (Immer et al., 2021a) or
learning invariances (Immer et al., 2022). However, its computational burden, for instance in Hessian
matrices, has prescribed diagonal or Kronecker factored approximations (Ritter et al., 2018; Martens
and Grosse, 2015a; Botev et al., 2017), which are now widely used for second-order optimization.
We provide more details on the connections to existing hessian based methods Daxberger et al.
(2021); Zhang et al. (2017); Khan et al. (2017), Bayes by Backpropagation Blundell et al. (2015) and
Adam Kingma and Ba (2015a) in Appendix C.

The full Bayesian perspective on VAE weights was first explored by Daxberger and Herndndez-Lobato
(2019) which we find similar in spirit to our work. In contrast to them (1) we follow a principled
Bayesian derivation. (2) Neither do we depend on Hamiltonian Monte-Carlo sampling, which is
generally hard to scale to efficient training.

5 Experiments

First, we demonstrate the computational advantages of the proposed Hessian approximation, and
then that our sampling-based training leads to well-calibrated uncertainties that can be used for 00D
detection, data imputation, and semi-supervised learning. For all the downstream tasks we consider
the following baselines: AE (Hinton and Salakhutdinov, 2006) with constant and learned variance, VAE
(Rezende et al., 2014; Kingma and Welling, 2014), Monte-Carlo dropout AE (Gal and Ghahramani,
2016) and Ensembles of AE (Lakshminarayanan et al., 2017). We extend StochManDetlefsen et al.
(2021) with the Hessian backpropagation for the approximate and mixed diagonals. The training code
is implemented in PyTorch and available?. Appendix A provides more details on the experimental
setup.

Efficient Hessian Approximation. For practical applications, training time and memory usage of the
Hessian approximation must be kept low. We here show that the proposed approximate diagonal Hes-
sian is sufficient and even outperforms other approximations when combined with our online training.

Fig. 7 show the time and memory requirement for different approximation methods as a function
of input size for a 5-layer convolutional network that preserves channel and input dimension. As
baselines we use efficient implementations of the exact and KFAC approximation (Daxberger et al.,
2021; Dangel et al., 2020). The exact diagonal approximation run out of memory for an ~ 36 x 36 x 3
image on a 11 Gb NVIDIA GeForce GTX 1080 Ti. In contrast, our approximate diagonal Hessian
scales linearly with the resolution, which is especially beneficial for convolutional layers.

2https://github. com/FrederikWarburg/LaplaceAE

https://github.com/FrederikWarburg/LaplaceAE

Hessian | —logp(z) | MSE |

KFAC 9683.9 + 2455.0 121.6 £24.5
Exact 283.3 £ 88.6 271+£0.9

Approx | 232.0£65.5 26.6 £0.6
Exact* 25.8+0.2 25.7+0.2
Approx* | 256.9+04 25.8+04

Table 2: Online training (indicated by *) outper-
forms post-hoc LA. The approximate diagonal
(a) Post-hoc (b) Online has similar performance to the exact diagonal

for both post-hoc and online LA.
Figure 8: Mean and variance of 100 sampled NN.

Tab. 2 shows that the exact or approximate Hessian diagonal has similar performance for both
post-hoc and online training. Using post-hoc LA results in good mean reconstructions (low MSE),
but each sampled NN does not give good reconstructions (low log p(z)). Using our online training
procedure results in a much higher log-likelihood. This indicates that every sampled NN predicts
good reconstructions.

Fig. 8 shows the latent representation, mean, and variance of the reconstructions with the KFAC, exact
and approximate diagonal for both post-hoc and online setup. Note that the online training makes the
uncertainties better fitted, both in latent and data space. These well-fitted uncertainties have several
practical downstream applications, which we demonstrate next.

Out-of-Distribution (O0D) Detection capabilities are critical for identifying distributional shifts,
outliers, and irregular user inputs, which can hinder the propagation of erroneous decisions in an
automated system. We evaluate OOD performance on the commonly used benchmarks (Nalisnick
et al., 2019b), where we use FASHIONMNIST (Xiao et al., 2017) as in-distribution and MNIST
(Lecun et al., 1998) as O0D. Fig. 9 (c) shows that our online LAE outperforms existing models in
both log-likelihood and Typicality score (Nalisnick et al., 2019a). This stems from the calibrated
model uncertainties, which are exemplified in the models ability to detect OOD examples from the
uncertainty deduced in latent and output space; see Fig. 9 (a,b) for ROC curves.

Fig. 10 shows distribution of the output variances for in- and OOD data. This illustrates that using LA
improves OoD detection. Furthermore, the online training improves the model calibration.

" Method logp(z) Typicality 02w Tinent
AE MSE 098 0.8
AE likelihood 0.66 0.70 0.65

" VAE 0.54 0.62 0.46 0.5
. MC-AE 097 097 0.08 031
0 LAE (post-hoc) 0.98 0.98 0.74 0.96

W e o wow oww @ o« ow w o LAE (online) 098 098 091 0.9

(a) Ofrtent (b) Olutput (¢) AUROC (1) for multiple statistics.

Figure 9: Out of Distribution detection. In-distribution data FashionMnist and OOD data Mnist.
(a) and (b) shows the ROC curves for latent and output space uncertainties. (c¢) shows (AUROC 7) for
log-likelihood, typicality score, latent space oaten: and output space Tougpue Uncertainties. Online LAE
is able to discriminate between in and OOD using the deduced variances in latent and output space.

BI1D
‘ 0OoD

(a) AE likelihood (b) MC-AE (¢) VAE (d) LAE (post-hoc) () LAE (online)

Figure 10: Histograms of variance for in- and O0D reconstructions in output space. Note that MC-
AE separates the distributions well, but the model assigns higher variance to the in- than O0D data.

8

(a) VAE (b LAE (pot—hoc) (c) LAE (online

Figure 11: Missing data imputation & generative capabilities. Online training of LAE improves
representational robustness. This is exemplified by the multimodal behavior in the data imputation
(top rows) that accurately model the ambiguity in the data. The bottom two rows show that the LAE
is able to generate crisp digits from random noise.

Method | MSE| logp(z)1 Acc.t ECE] MCE] RMSCE]
Classifier 053 016 025 0.8
VAE 10473 -10475 022 0.8 034 0.19
MC-AE 10605 -10605 045 028 038 029
AE Ensemble | 96.23 -100.94 053 0.2 02 0.13

LAE (post-hoc) | 101.62 -107.25 0.51 0.16 0.27 0.18
LAE (online) 99.59 -106.29 0.53 0.12 0.16 0.13

Table 3: Reconstruction quality measured by the MSE and log-likelihood for the data imputation.
Our well-calibrated uncertainties propagates to the MNIST classifier and improves the calibration
metrics ECE, MCE and RMSCE.

Missing Data imputation. Another application of stochastic representation learning is to provide
distributions over unobserved values (Rezende et al., 2014). In many application domains, sensor
readings go missing, which we may mimic by letting parts of an image be unobserved. Rezende et al.
(2014) show that we can then draw samples from the distribution of the entire image conditioned on
the observed part, by imputing the missing pixels with noise and repeatedly encode and decode while
keeping observed pixels fixed. Fig. 11 show samples using this procedure from a VAE, a post-hoc
LAE and our online LAE, where we only observe the lower half of an MNIST image. This implies
ambiguity about the original digit, e.g. the lower half of a “5“ could be a “3* and similarly a “7* could
be a “9%. Our LAE captures this ambiguity, which is exemplified by the multi-modal reconstructions
from the sampled networks in Fig. 11. The baselines only capture unimodal reconstructions.

Capturing the ambiguity of partly missing data can improve downstream tasks such as the calibration
of an image classifier. In Fig. 11 (c) we demonstrate how averaging the predictions of a simple
classifier across reconstructions improves standard calibration metrics. This is because the classifier
inherits the uncertainty and ambiguity in the learned representations. A deep ensemble of AEs
performs similarly to ours, but comes at the cost of training and storing multiple models.

When the entire input image is missing, the imputation procedure can be seen as a sampling mecha-
nism, such that our LAE can be viewed as a generative model. The bottom rows in Fig. 11 show that
the LAE indeed does generate sharp images from a multi-modal distribution.

Attribute ‘ AE VAE MC-AE LAE*
Arched Eyebrows | 0.50 0.52 0.55 0.60
. — Attractive 0.52 0.50 0.49 0.53
8" MC-AE Bald 098 098 0.98 0.98
g“ — VAE— Wearing Lipstick | 0.52 049 0.50 0.54
: —— LA {oniine) Heavy Makeup 045 052 049 0.56
Overall ‘ 0.73 0.72 0.73 0.74

" Number of labels per class Table 4: Semi-supervised classification accuracy

on CELEBA using only 10 labeled datapoints. *

Figure 12: Accuracy as an function of the refers to online LAE.

number of labels per class on MNIST.

e
-

'_ =
. -

Figure 13: Sample reconstructions on CELEBA. The top row shows the mean reconstruction and
the bottom row shows the variance of the reconstructed images.

Semi-supervised learning combines a small amount of label data with a large amount of unlabeled
data. The hope is that the structure in the unlabeled data can be used to infer properties of the data that
cannot be extracted from a few labeled points. Embedding the same labeled data point multiple times
using a stochastic representation scales up the amount of labeled data that is available during training.

Fig. 12 shows the accuracy of a K -nearest neighbor classifier trained on different amounts of labeled
data from the MNIST dataset. For all models with a stochastic encoder, we encode each labeled
datapoint 100 times and repeat the experiment 5 times. When only a few labels per class are
available (1-20) we clearly observe that our LAE model outperforms all other models, stochastic and
deterministic. Increasing the number of labels beyond 100 per class makes the AE and LAE equal in
their classification performance with the AE model eventually outperforming the LAE model.

In Tab. 4 we conduct a similar experiment on the CELEBA (Liu et al., 2015) facial dataset, where the
the task is to predict 40 different binary labels per data point. When evaluating the overall accuracy of
predicting all 40 facial attributes, we see no significant difference in performance. However, when we
zoom in on specific facial attributes we gain a clear performance advantage over other models. Fig. 13
shows the mean and variance of five reconstructed images. The online LAE produces well-calibrated
uncertainties in the output space and scales to large images.

Limitations. Empirically, the LAE improvements are more significant for overparameterized net-
works. The additional capacity seems to help the optimizer find a local mode where a Gaussian fit is ap-
propriate. It seems the regularization induced by marginalizing @ compensates for the added flexibility.

6 Conclusion

In this paper, we have introduced a Bayesian autoencoder that is realized using Laplace approxi-
mations. Unlike current models, this Laplacian autoencoder produces well-behaved uncertainties
in both latent and data space. We have proposed a novel variational lower-bound of the autoencoder
evidence and an efficient way to compute its Hessian on high dimensional data that scales linearly
with data size. Empirically, we demonstrate that our proposed model predicts reliable stochastic
representations that are useful for a multitude of downstream tasks: out-of-distribution detection,
missing data imputation, and semi-supervised classification. Our work opens the way for fully
Bayesian representation learning where we can marginalize the representation in downstream tasks.
We find this to consistently improve performance.

Acknowledgments and Disclosure of Funding

This work was supported by research grants (15334, 42062) from VILLUM FONDEN. This project
has also received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement 757360). This work was funded
in part by the Novo Nordisk Foundation through the Center for Basic Machine Learning Research in
Life Science (NNF200C0062606).

10

— Supplementary Material —

The supplementary material is organized as follows. First, we give more technical details on the
experiments. Second, we discuss the Laplace approximation and the “mean shift” issue encountered
in non-local maxima. Third, we elaborate more on the difference between related works and our
proposed method. Fourth, we present a much more thorough explanation of the proposed method
accompanied by relevant proofs. Fifth, we present more details on the hessian derivations.

A Experimental details

All experiments was conducted on one of the following datasets: MNIST (Lecun et al., 1998),
FASHIONMNIST (Xiao et al., 2017) and CELEBA (Liu et al., 2015). For training and testing the default
splits were used. For validation, we sampled 5000 data points randomly from the training sets. All
images were normalized to be in the [0, 1] range and for the CELEBA dataset the images were resized
to 64 x 64 additionally.

If nothing else is stated, the models were trained with the following configuration: we used Adam
optimizer (Kingma and Ba, 2015b) with a learning rate of 0.001 and default Pytorch settings (Paszke
et al., 2019). The learning rate was adjusted using ReduceLROnPlateau learning rate scheduler with
parameters factor=0.5 and patience=>5, meaning that the learning rate was halved whenever 5 epochs
had passed where the validation loss had not decreased. The mean squared error loss was used as the
reconstruction loss in all models. Models were trained until convergence, defined as whenever the
validation loss had not decreased for 8 epochs. Models trained on MNIST and FASHIONMNIST used a
batch size of 64 and on CELEBA a batch size of 128 was used.

Model-specific details:

* VAE: Models were trained with KL-scaling of 0.001. We use two encoders and two decoders,
such that the model has twice the number of parameters compared to the other models.

* MC-AE: Models were trained with dropout between all trainable layers with probability
p = 0.2. We keep the same dropout rate during testing.

* EMSEMBLE-AE: Each ensemble consists of 5 models, each initialized with a different
random seed.

* LAE (POSTHOC): For experiments with linear layers we used the Laplace Redux (Daxberger
et al., 2021) implementation. For convolutions, we found it necessary to use our proposed
hessian approximation. We use a diagonal approximation of the hessian in all experi-
ments. After fitting the hessian, we optimize for the prior precision using the marginal
likelihood (Daxberger et al., 2021). We use 100 MC sampling in all experiments.

* LAE (ONLINE): We use the exact diagonal in experiments with linear layers and the mixed
diagonal approximation in all experiments with convolutional layers. We use a hessian
memory factor of 0.0001 and sample only 1 network per iteration. We found that it was not
necessary to optimize for the prior precision when trained online.

A.1 Hessian approximation

We use a linear encoder-decoder with three layers in the encoder and decoder, TANH activation
functions, and latent size 2. We choose this architecture as Laplace Redux (Daxberger et al., 2021)
supports various hessian approximations for this simple network. We use Laplace Redux for all
post-hoc experiments except for the approximate diagonal hessian.

A.2 Out-of-distribution

We use a convolutional encoder-decoder architecture. The encoder consisted of a CONV2D, TANH,
MAXPOOL2D, CONV2D, TANH, MAXPOOL2D, LINEAR, TANH, LINEAR, TANH, LINEAR, where the
decoder was mirrored but with nearest neighbour Upsampling rather than MAXPOOL2D. We used a
latent size of 2 in these experiments for all models.

11

A.3 Missing data imputation

To elaborate on the procedure, we reconstruct 5 samples from the half/fully masked image. For each of
these reconstructions, we make 5 more reconstructions and take the average of these reconstructions.
The intuition is that the first stage explores the multi-modal behavior of the reconstructions. In the
second stage, the uncertainty of the reconstructed digit is reduced, and each sample will reconstruct
the same modality. By averaging over these modalities, we achieve a more crisp reconstruction. We
use the same architecture as in the hessian approximation experiment.

A.4 Semi-supervised learning

For the experiments on MNIST, we use a single convergence checkpoint for each model. We use
the same model architecture as in the hessian approximation. We did 5 repetitions for each model
where we first sampled n labels from each of the 10 classes from the validation set, then embedded
the 10 x n data points into latent space, trained a KNN classifier on the embedded points and finally
evaluated the accuracy of the classifier on the remaining validation set. This procedure was repeated
for different values of n in the [1, 100] range. For the stochastic encoders (VAE, MC-AE, LAE), we
repeated the embedding step 100 times with the goal that the uncertainty could help the downstream
classification. For the KNN classifier we use cross-validation (X = 2) to find the optimal number of
nearest neighbors.

For the experiments on CELEBA we repeated the exact same experiments but with a fixed value
if n = 10. Additionally, the classifier was changed to a multi-label version KNN-classifier to
accommodate the multiple binary features in the dataset. For CELEBA we use a convolutional
architecture. The encoder consists of 5 convolutional layers with TANH and MAXPOOL2D in between
each parametric layer. We use a latent size of 64. The decoder mirrors the encoder, but we replace
MAXPOOL2D with nearest neighbor upsampling.

B Laplace Approximation

Laplace approximation is an operator that maps local properties (derivatives) to global properties.
The idea is to infer a density on every point based on the curvature in a single point. This is done
through a Taylor expansion.

Given a vectorial space O of size D, let P(0) be an arbitrary distribution on © and let 8* € © be an
arbitrary point. Consider the second order Taylor expansion of the log density around 8*

InP(@) =InP(0")+Veln P(6%)(6 —6")+ %(0 —0*)"ViIn P(6*)(0 —0*)+O(||6 —6*|?),

where

9 H?
In P(6 2In P(0")];; = ——— In P(8)
801' n () oo [VB n ()] J 89280_7 n () oo

[VoIn P(0%)]; =

are the first and second-order derivatives.

Note that if P(0) is a Gaussian, then its log density is a second order polynomial and the second order
Taylor expansion is exact. This implies that starting from a Gaussian, the Laplace approximation can
infer the full exact density just from the values of Vg In P and V3 In P in a single point 6.

The main takeaway from the Laplace approximation is the strong, intrinsic, tie between the covariance
matrix and the negative inverse of the hessian of the log probability: —(V3 In P(6%))~ .

B.1 If 6" is a local maxima

If VgIn P(0*) = 0 the Taylor expansion consists of only two terms and the Laplace derivation
is easier. We also present this in order to develop intuition, although this case is a subcase of the
non-local maxima case. In the next section, we will consider the more general setting.

Define the Gaussian

LAPLACEp (6%; P) := N (0|u = 0*,0%* = —(VgIn P(0")) '), (13)

12

which has density
0(0) = L0 10— (T3 P(e7) " (0-07)
Zq ’
where Zg = P(0%)/(—2m)P det(V3 In P(0")) is the normalizing constant. Then, Q(8) is a good
approximation of P (0) in the sense that

InQ(0) +1InZg =In P(6") + %(0 —0°)"(ValnP(6*)" (0 — 0*) =

=~ 1n P(0") + %(0 —0°) (Vi P(8*) 1 (0 —-6")+0(]|6 —6*|°) =
=1n P(0).

Notice that 6 is in a local maximum, which ensures that the hessian V3 In P(8*) is negative semi-
definite. This in turn ensures that the normalizing constant Z) exists and that LAPLACE ., (0™; P) is
well defined.

B.2 If 6" is not a local maxima

In order to proceed to a similar derivation when Vg In P(0*) # 0, we first rearrange the terms in
the Taylor expansion. For a more compact notation, we write V In P instead of Vg In P(6*) and
V?21n P instead of V3 In P(6").

1
InP(@)=1InP(0*) +VInPO —6*) + 50— 0*)"V:In P(6 — 0*) =
1
=InP(0") — 5v1nPTv2 InP~!'VInP
1
+ 7(0 — 0"+ V2P 'VInP)"V? lnP(0 — 0" +V?’InP 'VInP) =
=InP(0") — v1nPTv2 P 'VInP + = (0 07)"V:Iin P(6 - 07),
where we define the new point 07 as
0; =6"— (ValnP(0")) 'Veln P(6%). (14)
Define the Gaussian
LAPLACE(0"; P) := N (8|p = 67,0° = —(VagIn P(0")7"), (15)
which has density

Q(6) = Péa*)e—%vmzﬂvz 1nP*1v1nPe%(9—e;)T(vg 1nP(e*))*1(0—9;)’
Q

where Zg = P(%)e=2VInP V2P VIn P [790yD det (V3 In P(87)) is the normalizing con-
stant. Then, Q(0) is a good approximatlon of P(0) in the sense that

InQ(0) +1nZg =In P(6*) — v1nPTv21nP 'VInP+ - (0 05)"V:InP(6 - 07) =
:111P(0*)+V1nP(070*)+§(0—0*) TV2InP(0 — 0*) =

~1nP(0*)+VInP(O - 6*) + %(0 — 0TV InP(0—-0")+ 0|0 — 6 |°) =
=1n P(0).
We highlight four points:

(1) In order to ensure that the normalizing constant Z, exists and consequently that LAPLACE(6"; P)
is well defined, the hessian V3 In P(0*) must be negative semi-definite. Differently from the locally
maximal case, this is no longer guaranteed.

(2) The method is numerically unstable if V3 In P(6*) has eigenvalues close to 0. This has been
empirically observed to commonly be the case (Sagun et al., 2016).

13

(3) We emphasize that the Taylor expansion is accurate around 6, but the Laplace Gaussian is
centered in 07. This is often referred to as “mean shift” and implies that the sampled parameters from
the normal distribution over weights are sampled far away from the actual mean.

(4) Now, assume In P(6) to be the composition of a function f(0) and a loss I(f). If, as in our
setting, f is linear and [is concave, then In P (@) is concave, its hessian is guaranteed to be negative
semi-definite, and the Laplace approximation is well-defined.

C Extended related work

Our proposed method’s update rule resembles different methods in the literature. This is rather
interesting since, despite arriving at a similar algorithm, they follow different derivations. In this
section, we seek to explain the nuances between existing methods and ours.

It is useful to recall our precision update rule

Hip = (1-o)H, + Jof! () Sgdof () Ho=3 . (16)
To the best of our knowledge, a key conceptual difference with all related works in the literature
is Exact vs. Approximate Hessian: The second term on the RHS, J " ¥ ~1.J is identical in all the
update formulations but comes from a different derivation. In the formulation of Daxberger et al.
(2021) (and others) this is an approximation of the hessian, that happens to guarantee negative
definiteness. In our formulation, this term comes from the linearization. This term is the exact hessian,
i.e. no approximation, such that negative definiteness is implied by the linearization. This results in a
more intuitive understanding of the linearization error.

C.1 Differences with Laplace Redux

Daxberger et al. (2021) specifically develop a post-hoc method, which assumes access to a MAP
parameter, nevertheless, they also present an online training scheme. This appears to be grounded in
ideas from second-order optimization, while ours is closer linked to the probabilistic model.

Neglecting their prior optimization procedure, Daxberger et al. (2021) considers

Hy =Y+ Joff(x) Syt Jaf(x). a7)

prior
We highlight two main differences.

Iteratively Updating the Hessian vs. Using an Uninformed Prior: In our formulation the first term
of the RHS is the previous precision, which we “discount” with a forgetting term « that comes from
the error inherited by moving away from the previous linearization. In the formulation of Daxberger
et al. (2021) this is a prior that is assumed to be in the form 721, where the scalar ~ is optimized at
every step through maximization of the evidence (Eq. 6 in their paper). This evidence maximization
comes with some drawbacks: (1) It tends to make the Laplace approximation overconfident to outliers.
They partially address this issue by adding to the evidence an auxiliary term that depends on an 0OD
dataset, penalizing it (Eq. 12 in their Appendix). (2) Besides inducing the avoidable need for an 00D
dataset, this technique has the same pitfall as VAEs, namely uncertainty should be a derived quantity,
not a learned one.

Computing the hessian at every iteration vs. every epoch: We update the hessian estimate every
iteration. In practice, Daxberger et al. (2021) updates the hessian every epoch. In principle, they
could update the hessian more regularly, but to the best of our knowledge, they do not explore this
path.

C.2 Differences with Variational Adaptive Newton Method
Khan et al. (2017) propose the following precision update rule

Hip =H; +adof'(x) S50 Jof (). (18)
The updates are very similar to ours, where the only difference is that the scaling is made on the

Jacobian product instead of on the previous precision H;. Both their and our updates are “additive”

14

in the sense that the magnitude is increasing, for them strictly monotonically, for us on average
depending on the magnitude of «.. Thus, in both cases, the variance will approach O in the limit,
modeling epistemic uncertainty disappearing for infinitely long training.

Their update rule comes from the Variational Optimization setting, which can be viewed as an instance
of Variational Inference neglecting the KL term. They highlight strong similarities with Newton’s
method.

C.3 Differences with Noisy Natural Gradient

Zhang et al. (2017) propose the precision update rule
Hyp = (1-a)H + adofi (@) S Jof! (). (19)
Again, the update rule is very similar to ours, besides the scaling being applied to the Jacobian product.

They use a convex sum, which makes the update rule “norm preserving”. Thus, these updates have
very different asymptotic behavior than ours.

Their update rule comes from applying, in the context of Variational Inference, natural gradient to the
variational posterior distribution, instead of directly on the parameters space. The natural gradient is
deeply connected with LAE and natural parameters highlight the importance of updating the precision
matrix instead of the covariance.

They also extend their derivation to the KFAC approximation of the hessian (in place of the exact
diagonal), this is made through the use of matrix variate Gaussian. Despite not being considered in
this work, a similar derivation is in principle feasible in our setting.

C.4 Connection with Adam

Both Zhang et al. (2017) and Khan et al. (2017) highlight strong similarities with the Adam
method (Kingma and Ba, 2015a). We share these similarities and we highlight them too. The
“connection point” is a noisy version of Adam. Zhang et al. (2017) describe this method and call it
“Noisy Adam” (Algorithm 1 in their paper). The difference from the vanilla version is that at each
step, instead of using the current parameter, they use a noisy version of it. The noise magnitude is the
pseudo-second-order term (v; in the original Adam paper (Kingma and Ba, 2015b)).

We can then interpret Noisy Adam as an instance of our variational setting, specifically where the
expectation estimate [E () [-] is made through Monte Carlo estimation with N = 1 samples. Having
the methods in the same setting, we can compare them and highlight the two main differences.

First, we emphasize the difference is in the second order term. Similarly to Zhang et al. (2017) and
Khan et al. (2017), we use the diagonal of the hessian (technically the diagonal of the GGN), while
Adam uses the pointwise square of the gradient, which they call the second raw moment and is
intended as a cheaply computable approximation of the Hessian.

Another difference is that Adam applies the square root. This is a minor point since, as pointed out
by Zhang et al. (2017), this change may affect optimization performance, but does not change the
fixed points.

C.5 Connection with Bayes by Backpropagation

Bayes by Backprop (Blundell et al., 2015) can be viewed as a sample-based approximation of Laplace.
In order to show this relation, we recall two very powerful equations (Opper and Archambeau, 2009a).
Specifically, let p, 3 be the parameter of a Gaussian distribution ¢(6) ~ A (u, X), and let V(6) be
an arbitrary L? integrable function (the log-likelihood in our case). Then, we are interested in the
derivatives of Eg..,[V (8)]. By standard Fourier analysis and integration by part, we have

VuEoq[V(0)] = Egyg[VoV ()], (20)

VB[V (O)] = JEo [V3V(6)] @

While the first equation is somehow trivial, the second highlight a very deep relationship. The LHS
can be rewritten as

VZEQNq[V(G)] = VZEeNN(O,l) [V(,u + EZ)] = EENN(O,].) [VEV(}L + 62)]. (22)

15

We can recognize that inside the expectation on the RHS is exactly the update rule for the variance in
the bayes by backprop method (Blundell et al., 2015). Thus, we can interpret bayes by backprop as
a one-sample Monte Carlo estimation of the expected value. The equations shows that in the limit
of infinite samples, the bayes by backprop update step VsV (1 + €X) converges to the (averaged)
Laplace approximation step Eg..,[V2V (0)] up to a factor 2. This motivates both the power and the
instability of bayes by backprop.

D Model

D.1 Overview

Let X = RP be the data space, let Y = RP be the reconstruction space and let © = R’ be
the parameter space. Let F = (© — (X — Y)) be the space of operators from © to the space of
operators from X to Y. We will denote a function f € F applied to a parameter 8 € O as fg : X — Y.
This will represent, for example, a NN f with a specific set of parameter (weights) @ € ©, that maps
some data & € X to some reconstruction fo(x) =y € Y.

Let X X Y x © x F be a probability space. The only assumption we make on this space is
pyle,0.f) ~N(ylp = fo(x),0* =%) V(2,0,f) eXxOxF (23)

where 3 € M(RP x RP) is a fixed variance matrix. This is a common assumption for regression
tasks, and is sometimes referred to as the “data noise” or “reconstruction error”. In this paper, we fix
> =1, but the derivations hold for the general case. With only this assumption, the distribution is
undefined and multiple solutions can exist. Thus, we require more assumptions.

A dataset D = {z,,} is a finite of infinite collection of data @, € X that is assumed to follow a
certain, fixed but unknown, distribution

Sacrificing slim notation for the sake of clarity, we introduce an operator Z : X — Y. This represents
the ideal reconstruction for a given a. In the standard supervised setting, this would be the operator
(defined on the dataset only) that maps each data input to its label. In our unsupervised setting, where
X and Y are the same space, the operator Z is simply the identity (Indeed they are not the same space,
they are isomorphic spaces that we identify through the operator Z). Since 7 is the identity, it is often
neglected in the literature, which can lead to unclear and potentially ambiguous Bayesian derivations.
Thus, we choose to adopt this heavier, but more precise notation.

We assume access to a specific fVV € F. Practically this will be our NN architecture, i.e. an operator
that, given a set of parameters & € © gives rise to a function from X to Y. Having fV¥ fixed, one
may consider f not to be stochastic anymore, we choose to still explicitly condition on f in order to
have a clearer notation in later stages. Note that, despite not being covered in this work, a proper
stochastic derivation also on the NN architecture should be feasible.

D.2 Objective

The NN’s parameter optimization process in this full Bayesian probabilistic framework can be viewed
as: given a fixed V¥V € [, namely the NN architecture, maximise the reconstruction probability of
Z(x,,) over the dataset D

Ewnrwp(a:) I:p(y‘mnv fNN)|y:I(mn):| = Z p(ylwnv fNN)’y:I(mn)v (25)

x, €D
where the untractable p(y|z,,, fVV) can be expanded in € and thus related to our hypothesis (23) as
p(y|wna fNN) = E@Np(@\fc“,fNN) [p(y|wna 07 fNN)] . (26)

Notice that the only unfixed quantity is the distribution on the parameters, which we will optimize
for. We are not interested in finding a datapoint-dependant distribution, but rather one that maximise
all reconstructions at the same time, i.e. p(0|fN™) = p(8|x,,, V). We can then frame Bayesian

16

optimization as: find a distribution on parameters such that

NN
q(6) € arg mmax, mZGDIEQNP e\fNN)[(yl@n, 0, f)!FI(_,B")} 27)
=arg max > Eompiorrany [P (@n) [N (fN (20),5))] - (28)
x, €D

Moreover, finding this optimum in the space A(©) of all distributions on © is not tractable. So, as
commonly done, we restrict ourselves to the subset G(©) C A(O) of Gaussians over ©. Then, a
solution in our context is

4(9) € arg max > Bongeo) [P(Z(@n) [N (5N (), 5))] - (29)
x, €D

We emphasize that this solution has no guarantees of being unique, but we are interested in finding
one of them.

D.3 Joint distribution for a fixed datapoint

Let us first get a better understanding of the joint distribution on Y x © conditional to a fixed datapoint
x € X and a network architecture f € F

p(y, 0z, f). (30)
This distribution has two marginals
p(ylz, f) (31
p(Olz, f) (32)
and two conditionals
p(yl0,z, f) (33)
p(Oly,z, f). (34)

These four quantities must satisfy the system of two “recursive” equations

p(ylz,) = /@ p(yl6. 2. fp(8lx,)do = 35)
= Egpoja,5) (Y0, x,)]

p(lz, f) = / p(8ly. @, fp(ylz,)dy = 36)

If these are satisfied then the joint is a well-defined distribution and we can apply Bayes rule

p(yl0,z, f)p(0lx,) = p(y, 0|z, f) = p(Oly, z, f)p(y|z, f) 37
which in logarithmic form is
log p(yl0,z, f) +logp(Olz, f) = logp(0ly, z, f) + logp(ylz, f). (38)
We can factor in the assumptions. The “data noise” assumption gives us one of the two conditionals:
The “Gaussian parameter” assumption gives us one of the two marginals:
p(Olz, f) = q'(8) ~ N(Ol = 0,0 =H,). (40)

With these in place, the joint distribution is uniquely defined. The other marginal, by Eq. 35, is
p(ylz, f) = Eoqi () [P(YIN (fo(z), 2))] (41)

17

and the other conditional, by Bayes rule, is

_ 0.z, p(0lz. 1)
L e TTEN

: (42)

Despite being uniquely defined, the integral in Eq. 41 is, with a general f, intractable, and so is the
joint distribution.

But why do we even care? The intractability of p(y|x, f) in Eq. 41 may at first glance appear
irrelevant. This is the case, for instance, with bayes by backprop (Blundell et al., 2015) methods.
They simply need access to the gradient of this quantity. For this purpose, a simple Monte Carlo
estimate of the expectation is enough.

On the other hand, we are interested in recovering a meaningful distribution on parameters. This
imply that we aim at using Eq. 41 to enforce that Eq. 36 holds. For this purpose we need access to
the the density p(y|x, f), so a Monte Carlo estimate of Eq. 41 is not enough.

D4 Linear f

Theorem 1. Given the data noise assumption from Eq. 39

p(yl0,z.) ~ N(ylp = fo(z),0° = %), 43)
given the Gaussian parameter assumption from Eq. 40 for some 6, H,
p(8lz, f) = ¢"(0) ~ N(6]u = 0,,0° = H 1), (44)

assume that f is linear in 0, i.e.
fg(:l:) = fo(d)) + Jf(il?)a VO € 0,Vx € X. 45)
Then the joint distribution is Gaussian itself

where —1
= (o) %= (1o e assen +2):

Proof. With the further assumption of linearity of f, we can explicitly carry out the integral in the
expectation in Eq. 41

p(wa, f) = EOth(B)[p(y|N(f9(w)a E))} =
- /@ Pp(yIN (fo (),)’ (8)d6 =

- /@ PYIN (fo(),)p(BIN (8, H; 1))d6 =

— /@ PN (o) + TF.()8, 5))p(6IN (6, H 1))d6 =
— (YN (fou (@), (f-(2) THLT f.(@) " +).

We emphasize that as a consequence V3 log p(y|z, f) is not dependent on 6;. O
Having Theorem 1 in place, we can go back to our original problem. We need to deal with a fixed

non-linear architecture fNV. We can exploit Theorem 1 by defining f*: a linearization of fVV with
a first-order Taylor expansion around 6,

fo(x) .= TAYLOR(fVN, 8,)(x) =
= fo N (z) + Jofo " (x)(6 — 6,) 47)

and it holds that
o " (@) = fo(x) +O(]0 - 6:]%). (48)

18

Recalling Eq. 23 both for fV¥ and for f*

p(yle, 0, YY) ~ N(ylp = f3" (x),0° = %) (49)
p(ylz. 0, ") ~ N(ylp = fo(z),0 =) (50)

that, together with Eq. 48, imply
N(ylp=fo'"(x),0® = %) ~ N(ylp = fo(z) + O(||0 — 6:]]%),0> = T, (51)

where we can interpret the unknown O(]|@ — 6;||?) as 6-dependent noise. More specifically, calling
~ > 0 the scalar constant of the O-term, we assume that

(16 — 0,]2) ~ (0 — 8,) where e ~ N(0, 1) (52)

and thus, from Eq. 51, we have
Nyl = fo' (@),0% =) ~ N(ylu = fo(x),0° =X+ (|0 — 6:[°T). (53)

At this point, integrals are not analytically tractable, and thus a proper proof is not feasible, the
intuition is that this increased variance reflects in increased variance in p(8|x, fV V)

V3 logp(6)|x, f]\”\’)‘gzgt+1 ~ V3 logp(0|x, ft)’a:etH + 916041 — 642, (54)

where we introduce a hyperparameter o > 0 to cope with this added variance. If we then assume the
Jacobian Jg fVV to be a Lipschitz function, then the Lipschitz constant is an upper bound on +, as
follows from the Taylor expansion of Eq. (47). If this Lipschitz constant is smaller than the inverse of
the gradient step 1/||0;+1 — 0:|| (which is not an unreasonable assumption for the gradient ascent to
be stable) we have

MOrs1 = 04> = 16141 — 64| (55)

that gives us a plausible order of magnitude for choosing the hyperparameter a.

Motivation: During training, we produce a sequence of Gaussians ¢*(6) ~ N (0;, H; ') that we
assume to be the distribution p(8|x, f?), at every step ¢ > 0. This distribution ¢ is then used for (1)
Gaussian derivation in the linear case, for (2) Monte Carlo sampling in the update rule 8; — 0,
and (3), as second order derivative, for update rule H; — H; ;.

Moreover, given that this distribution g is our "best guess so far", we assume it to be also the
distribution p(@|x, fNV). This, being fN* not linear, (1) cannot be used for Gaussian derivation,
(2) can reasonably be used for sampling (and thus we derive the improved update rule Eq. (64)), and
(3) can somehow be used as second order derivative (and thus we derive the improved update rule
Eq. (65)), but the latter requires some more care. That is why we introduce the parameter a.

D.5 Iterative learning
Our learning method produces a sequence of Gaussians
'(0) ~N(O|u=6;0°=H") (56)
and a sequence of linearized functions
ft = TavLor(fVV, 0,) (57)
for every t > 0.
Initialization is trivially done using a Gaussian prior on the parameters.
0o = 0" H, = (s (58)

Iterative step is made in two steps. First, having access to 8;, we “generate” the linearization f*.
Practically this is equivalent to computing the two quantities fé\z N(z) and Jg fé\f N(z), that, together

with the value ; are actually equivalent to “generating” f*, as Eq. 47 shows.

Second, we compute the Gaussian parameters 6,1 and H; 1.

19

Recalling our aim of maximizing the quantity Eq. (29), update on ¢(-) means, 6; — 0,1, is ideally
made through gradient ascent steps on p(y|«, f)|y—z(z). As this is intractable, we instead do gradient
steps on the lower bound £, of (the log of) Eq. 35

6t+1 = 015 +)\Vgﬁy‘ (59)
y=I(z)
where
Ly = Egmp(ojz, 5108 0(y|0, 2,)] <logEgpgiz, s [0(y]0, 2, [1)] (60)
and so
VB‘C'!J |y:l’(m) =]EGNP(Q\:D,]”) |:v9 10gp(y|0, -’13, ft) |y:I(zl:):| =
= Eo~qt(0) [Vo logp(Z(z)|N (fo(z), 2))] . (61)
Recalling the Laplace approximation Eq. (15), the negative precision, —H, 1, is ideally set to be the

the hessian of the log probability p(@|x, f), evaluated in 6, ;. As this is intractable we instead set it
to the hessian of the lower bound Lg of (the log of) Eq. (36)

H,. = V3L ‘ 62
41 050, ., (62)
where
£9 = Eywp(y|w,ft) [10gp(0|y, Z, ft)] < 10g]Ey~p(y|w,ff') [p(a‘yv x, ft)] (63)
and so
Vgﬁ@ :Epr(y\w,ft) [Vg 10gp(0|y,:137ft)‘ :|
:9t+1 9:9t+1
via Eq. (38)
= Eypiyle.rt)| Vo logp(yl0.a. /)| +Vilogp(Bla, /| +
=0t1+1 =0¢11
— V21 Lt ‘
o logp(ylz,) e:etﬂ]

via Theorem 1

+ Vg logp(8|z, f')

0=0¢1

9:9t+1:|

=Eyp(yle.r) |Jof (@) V5 10gp(y|Oii1, 2, 1) o f! (x) + Vi 1ogp(9|w7ft)‘9_9 }
L =0t4+1

via HP Eq. (23)

= Byl |—Jof (@) TS g f(2) + V2 1og p(6], ft)‘ggtJ

= Eyp(yla.st) | Vo logp(yl0,z, f')
via the chain rule Eq. (67)

= —Jof!(2) " o /! (@) + V5 logp(6la,)|

=011

= —Jof!(2) =" oS! (@) + V5log'®)|
=—Ut+1

= —Jof (@) TS o f! () — Hy.
D.5.1 Improved update rule

As said, the update 8; — ;. is ideally made through gradient ascent steps on p(y|x, f)|y—z(x)
but we instead use the tractable lower bound with f*. We can perform the same derivation using fVV
in place of f. Assuming p(0|z, fNV) ~ ¢*(8) for sampling, leads to the improved update rule

0t+1 = 0t +)\ngqt(g) [VQ 10gp(I(:B)|N(éVN(iL‘), Z))] . (64)

Similarly, the negative precision —Hy_ 1 is ideally set to be the hessian of the log probability p(8|x, f).
but instead, we use the tractable lower bound with f¢. Here we cannot perform the same derivation,

20

since Theorem 1 does not hold anymore. Instead, we can rely on the estimate Eq. (54) to improve the
term

Vilogp(6la /0| = -H, — Valogpola, M) ~—(1-aH,,

=011 60=011

and this leads to the improved update rule

Hy i =(1—o)H + Jofi(x) S o fl(x). (65)

E Fast Hessian

We are interested in computing the hessian of a loss function. For this purpose, the Jacobian of the
NN w.r.t. parameters plays a crucial role. In this section we develop a better understanding of this
object, we derive the backpropagation (also used by the BackPack library (Dangel et al., 2020)) and
finally, we explain our approximated backpropagation that allows linear scaling.

E.1 Jacobian of a Neural Network
Let us first define some terminology that we will need for chain rule derivations. A NN is a composition
of [functions f := fr, o fr,_, o ... o fr,o fr,:

z:of—>a;1—> —>xi_1f—>xi—> —>a:l_1f—>a:l
Ly L, L

i

where there are parametric and non-parametric function fr,. We here highlight two common
parametric functions and a common non-parametric function.

Parametric function such as a linear layer
z; = fr,(xi—1) = ¢r,xi—1 where ¢r, € M(|4], |z5-1])
or convolution
v = fr,(Ti—1) = conVfeu=g¢,, (Ti—1) where ¢, € M(in channel, out channel, feat height, feat width)
Non-parametric such as activation functions L; = tanh,RelU...
x; = fr,(xi—1) where |z;| = |z;-1]
What is conventionally called layer is actually a composition of two functions: a linear function and

an activation function. For sake of clarity in our derivation, we do not adopt this convention and we
use the word “layer” to indicate the singular “function” component of the NN.

Let us now consider a NN with w parametric layers and / — w activation layers
X, = f(b(xO) = fLI 0---0 le(‘TO) where d) = (d)lv cee 7¢w)7
and define the bijection

W: {l,...,w} — {i|s.t. L;isparametric layer} C {1,...,I}
P — i s.t. L; has parameters ¢,

from the subset of parametric layers to the corresponding index in ¢ = (¢, .. .,).

The Jacobian w.r.t. the parameters Jy fs(x0) € M(|zy], |p1| + - - + |¢w|) is @ matrix with number-
of-output |z;| rows and number-of-parameters || columns. For reference, just storing this matrix can
exceed memory limits even with the smallest autoencoder working on MNIST.

There are two ways of looking at this matrix: (1) row by row, that is output by output or (2)
block-of-columns by block-of-columns, that is layer by layer.

E.2 Jacobian per output

Each row of the Jacobian corresponds to the gradient w.r.t. the parameters of an element of the output
Volfo(zo))s

Volfo(xo)]z|

Jofo(x0) =

21

This can be computed by defining |x;| loss functions
lossi(x)) == [z]y fork=1,...,|z]

and backpropagating each of those to obtain one line at a time. The disadvantage of this formulation
is that we cannot reuse computation for one loss function to improve the computation of other loss
functions (they are independent). Moreover, we need to store all these rows at the same time in order
to compute .J ' .J, which is computationally impractical.

E.3 Jacobian per layer

Each column of the Jacobian is the derivative of the output vector w.r.t. a single parameter. We can
then group the parameters (i.e. columns) layer by layer

Jg fo(zo) = (Jo, fo(wo) I, fo(x0))

where Jy, fo(20) € M(|2:1], [¢p]). Let us focus on the computation of .Jy, f (o) for a fixed layer

p=1,...,w. First notice that the parameters ¢, in fy = fr, © ... o fr, only appear in fz,, . and
SO
afr, .
5 Gj (wio1) = 0if i # W(p)
P
Chain rule (informal)
Oslwo) _ O _
0pp 0pp
- 83:; 8$l,1 -
Ox;—1 09,
_ 833; 830;_1 8xw(p)+1 afL'W(p)
8xl_1 5391_2 o axw(p) 8¢p
—— —— N N———
layer layerl — 1 layer W(p) + 1 layer W(p)
Ww.r.t. Input w.r.t. input w.r.t. input w.r.t. parameters
Chain rule (formal)
k=l
J¢pf¢(x0) = H Jmk—lf[/k (xkfl) J¢prW(p) (‘TW(;D)—l) (66)
W(p)+1

The intuition for the chain rule is that the Jacobian J, f5(z0) is the composition of the Jacobians
w.r.t. input of subsequent layers times the Jacobian w.r.t. parameters of the specific layer. Thus, we
can reuse computation for one layer to improve the computation of other layers, specifically the
product of Jacobians w.r.t. input. Moreover, we can compute JpT Jp layer by layer without ever storing
the full Jacobian.

E.3.1 Jacobian of a layer w.r.t. to input
The Jacobian of a standard linear layer w.r.t. to the input is

Jap 1 fo, (Tp—1) = &y

and this remains the same also in the case with a bias. The Jacobian of a convolutional layer w.r.t.
to the input is
Jo,_ CONVieai—g, (Tp—1) = M(cONVieqi—g,)

The Jacobian of the activation function depends on the specific choice. Recall that, for each layer 1,
x; € RlI%il is a vector
@i = ([wilk) o,y

where [z;]; € R is the value in position k of the vector ;.

22

If L; is tanh

[ic1le _ p—lzi-1]k
¢ € fork:I,...,|xi_1|

wile = [fr.(@i-1)lk = tanh([zia]s) = "o
then
[ois fri(@ion)lky = 05 (1= (tanh(fzia]w))?) = 6ry (1= [2i]k) fork,j=1,... ||
If L; is ReLU

[k = [fr, (xi—1)]k = ReLU([x;—1]x) = max(0, [z;—1]%) fork=1,...,|x;—1|

then
[in,—lfLi (xi—l)]kj = 5k,j (1 if [xi—l}k: > 0 else 0) for k,j =1,..., |Ii_1|.

E.3.2 Jacobian of a layer w.r.t. to parameters
The Jacobian of a standard linear layer w.r.t. to the parameters is
Jp foi(@ic1) =g @@ € M(|2s], |d4l)
and in the case with bias b; € R¥: the Jacobian is
J¢'i7bif¢'i;bi ('ri—l) = lei\ ® [xi—h 1] € m(‘xi‘v ‘le‘ + |b1|)
The Jacobian of a convolutional layer w.r.t. to the parameters is
J¢7¢ CONVfeat=¢; (Ii—l) = J¢l Convg;atzrev(;ci,l) (¢1) =M (Convfeatzrev(mfl))T € m(|:177 |7 |¢7 |)

and in the case with bias b; € R the Jacobian is

J i, CONViea—g, bias—b, (Ti—1) = (M(CONVieurren(z; 1)) 1) € M(|2s], [¢s] + [bi])

E.4 Hessian of a Neural Network

Consider a function £ : Rl*!l — R from the output of the NN to scalar value. This later will be
interpreted as loss or likelihood, but for now, let us stick to the general case.

We are interested in the hessian of this scalar value w.r.t. the parameters of the NN

V2 (L(fs(wo))) €M <Z 6l |¢>z—> :

Similarly to the previous section, it is convenient to see this matrix as block matrices, separated
layer-wise

V3LUs@0) mitamLUo(wo) o gl L(fa(wo)
gasas L fo(@0) V3, L(fo(w0)

VoL(fo(x0)) =

2

so2aa L(fs(x0)) V2 L(f4(x0)

The first common assumption is to consider layers to be independent of each other, i.e.

82
L =0 Vi # j
96:00; (fs(@0)) i F]
Let us now fix alayer p = 1, ..., w and focus on a single diagonal block.

V3, L(fo(x0)) € M6, |6,)-

23

According to the chain rule

]
V3, L(fo(20)) = Jo, fo(x0)" - V2, L(x1) - Jo, folm0) + Y [V, L@)i - V3 [fs(xo)li (67)

i=1
=:G(9)

The second term of the RHS is equal to 0 if the model perfectly fits the dataset, V,, £L(z;) = 0, OR if
[is linear in the parameters, Hy [fs(xo)]: = 0.

The first term of the RHS of Eq. 67, G(¢), is in literature referred to as Generalized Gauss-Newton
(GGN) matrix. It can be computed efficiently thanks to the view of the Jacobian as layer by layer.
Using equation (66), the expression for the approximated hessian w.r.t. to ¢,, is then

G(9) = Jy, folxo)T - Hy L(31) - Ty, fo(0) =

l k=l
=Jof i | T1 Teeffy | Hel@) | T Jenfrn | Jo, frmen
k=W (p)+1 W(p)+1

and from this, we can build an efficient backpropagation algorithm.

Algorithm 1 Algorithm for J,, f7 - V2L - J, f

M = Vilﬁ(l‘l)
fork=1[0,1—-1,...,1do
if Ly, is parametric with ¢, (i.e. k = W(p)): then
Hp = J¢)pf[—/rk M - J¢prk
end if
end for
return (Hy,..., Hy,)

As itis written, each H,, is a matrix |¢,| X |¢,| so we technically obtain the hessian in a block-diagonal
form

H, 0

0 H,
if we are interested in the diagonal only, we can construct that by concatenation of the diagonals for
each H),.

E.4.1 Fast approximated version of the Algorithm

The idea is to backpropagate only the diagonal of the matrix M, neglecting all the non-diagonal
elements. In a single backpropagation step, we have

M' = szfgp <M - JTprp
In order to backpropagate the diagonal only, we need to use the operator
diag(M) — diag(M")

For linear layers and activation functions, this operator is trivial. For the convolutional layer it turns
out that this operator is itself a convolution

diag(M') = conv (diag(M))

feat:qﬁi,2>

where the kernel tensor gb}(?) is the pointwise square of the kernel tensor ¢,,.

24

Log likelihood: -408.17 Log likelihood: -58.77 Log likelihood: -29.0 Log likelihood: -26.3

Figure 14: Snapshots of optimization of a mixture of Gaussians with fixed means and component
weights (i.e. only variances are learned). We observe that variances of components far away from
data increase in order to push more probability mass to the region where data resides. The Gaussian
VAE should exhibit the same behavior in order to maximize data likelihood, but in practice, it does
not.

E.5 Hessian of a Reconstruction Loss

In the previous Algorithm, the backpropagated quantity is initialized as the hessian of the loss w.r.t.
the output of the NN V2, L(z;), or, in an equivalent but more compact notation V3£ (f). The value
of this hessian clearly depends on the specific choice of loss function L.

The most common choice of the likelihood for regression is the Gaussian distribution, while for
classification it is the Bernoulli distribution. The Gaussian log-likelihood is

L(f) = log p(alp=fo(z), 0> =03) = —%ignx ~fo@)|? ~log(VZrow) (68)

and its hessian is identity scaled with o4
Vilogp(zlu=fo(x),0?=03) = —(0a) 1 (69)

The Bernoulli log-likelihood is

L(f) = logp(c| fo(z)) = log[softmax(fy(x))]c = [fo()]c —log (Z e”“"””) (70)

i

and its hessian can be written in terms of the vector 7 = softmax(fy(x)) of predicted probabilities

Vi logp(clfo(z)) = — V7 log (Ze“ﬂ“”i) = diag(m) — 7" n

%

We highlight that both Hessians are independent on the label, and thus the GGN is equal to the Fisher
matrix, this is true every time p(y| fg(x)) is an exponential family distribution with natural parameters
fo(z). In this paper, we focus on the Gaussian log-likelihood, but we emphasize that the method is
not limited to this distribution.

F Intuition on optimization of variance in VAEs

One can imagine the Gaussian VAE as an infinite mixture of Gaussians (see e.g. Mattei and Frellsen
(2018) for an extensive discussion of this link) where the weights are fixed by the prior on the latent
space. To increase the probability of the training data p(x), optimizing the neural network will push
the probability mass from regions far away from training data to regions with training data. Thus, the
network should learn to have large variance far away from training data, and low variance close to
training data.

We illustrate this idea with a toy example (see snapshots in Fig. 14 or animation at https://
frederikwarburg.github.io/gaussian_vae.html). In this example, we show a mixture of
Gaussian with components, where we optimize the variance (and fix the mean and the weights of the
mixture components). We see that the variance of the components far away from the training data
increases, whereas the variance of the component close to the data decreases. The opening example
of the paper demonstrates that the Gaussian VAE does not exhibit this behavior even if this is optimal
in terms of data likelihood.

25

https://frederikwarburg.github.io/gaussian_vae.html
https://frederikwarburg.github.io/gaussian_vae.html

References

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks. In
Proceedings of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, page 1613-1622. JMLR.org, 2015.

A. Botev, H. Ritter, and D. Barber. Practical Gauss-Newton optimisation for deep learning. In International
Conference on Machine Learning (ICML), pages 557-565. PMLR, 2017.

O. Cappé. Online sequential monte carlo em algorithm. In 2009 IEEE/SP 15th Workshop on Statistical Signal
Processing, pages 37-40. IEEE, 2009.

F. Dangel, F. Kunstner, and P. Hennig. BackPACK: Packing more into backprop. In International Conference on
Learning Representations (ICLR), 2020.

E. Daxberger and J. M. Hernandez-Lobato. Bayesian variational autoencoders for unsupervised out-of-
distribution detection. arXiv preprint arXiv:1912.05651, 2019.

E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace Redux - Effortless
Bayesian deep learning. Advances in Neural Information Processing Systems (NeurlPS), 34, 2021.

N. S. Detlefsen, A. Pouplin, C. W. Feldager, C. Geng, D. Kalatzis, H. Hauschultz,
M. G. Duque, F. Warburg, M. Miani, and S. Hauberg. Stochman. GitHub. Note:
https://github.com/MachineLearningLifeScience/stochman/, 2021.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In International Conference on Machine Learning (ICML), volume 48, pages 1050-1059, New
York, New York, USA, 20-22 Jun 2016. PMLR.

A. Gelb et al. Applied optimal estimation. MIT press, 1974.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313
(5786):504-507, 2006.

A. Immer, M. Bauer, V. Fortuin, G. Ritsch, and K. M. Emtiyaz. Scalable marginal likelihood estimation
for model selection in deep learning. In International Conference on Machine Learning (ICML), pages
4563-4573. PMLR, 2021a.

A. Immer, M. Korzepa, and M. Bauer. Improving predictions of bayesian neural nets via local linearization.
In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 703-711. PMLR,
13-15 Apr 2021b. URL https://proceedings .mlr.press/v130/immer21a.html.

A. Immer, T. F. van der Ouderaa, V. Fortuin, G. Ritsch, and M. van der Wilk. Invariance learning in deep neural
networks with differentiable Laplace approximations. arXiv preprint arXiv:2202.10638, 2022.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical
models. Machine Learning, 37(2):183-233, 1999.

L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun. Hands-on bayesian neural networks — a
tutorial for deep learning users, 2020. URL https://arxiv.org/abs/2007.06823.

M. E. Khan, W. Lin, V. Tangkaratt, Z. Liu, and D. Nielsen. Variational adaptive-newton method for explorative
learning, 2017. URL https://arxiv.org/abs/1711.05560.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015a. URL http://arxiv.org/abs/1412.6980.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on Learning
Representations (ICLR), 2015b.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference on Learning
Representations (ICLR), 2014.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using
deep ensembles. In Advances in Neural Information Processing Systems (NIPS), volume 30, 2017.

P. S. Laplace. Mémoire sur la probabilité des causes par les événements. Mémoire de I’Académie Royale des
Sciences, 1774.

26

https://proceedings.mlr.press/v130/immer21a.html
https://arxiv.org/abs/2007.06823
https://arxiv.org/abs/1711.05560
http://arxiv.org/abs/1412.6980

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

D.J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 05 1992.

D. J. C. MacKay. Probable networks and plausible predictions: A review of practical Bayesian methods for
supervised neural networks. Network: Computation in Neural Systems, 6(3):469, 1995.

W.J. Maddox, T. Garipov, P. Izmailov, D. P. Vetrov, and A. G. Wilson. A simple baseline for bayesian uncertainty
in deep learning. Neurips, abs/1902.02476, 2019.

J. Martens and R. Grosse. Optimizing neural networks with Kronecker-factored approximate curvature. In
International Conference on Machine Learning (ICML), pages 2408-2417. PMLR, 2015a.

J. Martens and R. B. Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In
International Conference on Machine Learning (ICML), 2015b.

P-A. Mattei and J. Frellsen. Leveraging the exact likelihood of deep latent variable models. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper . pdf.

E. Nalisnick, A. Matsukawa, Y. W. Teh, and B. Lakshminarayanan. Detecting out-of-distribution inputs to deep
generative models using typicality, 2019a. URL https://arxiv.org/abs/1906.02994.

E. T. Nalisnick, A. Matsukawa, Y. W. Teh, D. Goriir, and B. Lakshminarayanan. Do deep generative models
know what they don’t know? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019b. URL https://openreview.net/forum?id=
H1xwNhCcYm.

R. M. Neal. Bayesian leaning for neural networks. University of Toronto, 1996.

M. Opper and C. Archambeau. The Variational Gaussian Approximation Revisited. Neural Computation, 21(3):
786-792, 03 2009a. ISSN 0899-7667. doi: 10.1162/neco.2008.08-07-592. URL https://doi.org/10.
1162/neco.2008.08-07-592.

M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):
786-792, 2009b.

Y. Park, C. Kim, and G. Kim. Variational Laplace autoencoders. In International Conference on Machine
Learning (ICML), pages 5032-5041. PMLR, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS), pages 8024-8035. 2019.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep
generative models. In International Conference on Machine Learning (ICML), volume 32 of Proceedings of
Machine Learning Research, pages 1278-1286. PMLR, 22-24 Jun 2014.

H. Ritter, A. Botev, and D. Barber. A scalable Laplace approximation for neural networks. In International
Conference on Learning Representations (ICLR), volume 6, 2018.

D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by error propagation. In Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations, pages 318-362.
1986.

L. Sagun, L. Bottou, and Y. LeCun. Eigenvalues of the hessian in deep learning: Singularity and beyond. arXiv
preprint arXiv:1611.07476, 2016.

F. Wenzel, K. Roth, B. Veeling, J. Swiatkowski, L. Tran, S. Mandt, J. Snoek, T. Salimans, R. Jenatton, and
S. Nowozin. How good is the Bayes posterior in deep neural networks really? In International Conference on
Machine Learning (ICML), pages 10248-10259, 2020.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms, 2017.

27

https://proceedings.neurips.cc/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper.pdf
https://arxiv.org/abs/1906.02994
https://openreview.net/forum?id=H1xwNhCcYm
https://openreview.net/forum?id=H1xwNhCcYm
https://doi.org/10.1162/neco.2008.08-07-592
https://doi.org/10.1162/neco.2008.08-07-592

G. Zhang, S. Sun, D. Duvenaud, and R. B. Grosse. Noisy natural gradient as variational inference. CoRR, 2017.
URL http://arxiv.org/abs/1712.02390.

M. Zhang, P. Hayes, and D. Barber. Generalization gap in amortized inference. Workshop on Bayesian Deep
Learning @ NeurIPS, 2021.

28

http://arxiv.org/abs/1712.02390

	1 Introduction
	1.1 Background

	2 Laplacian Autoencoders
	3 Scaling the Hessian to Large Images
	4 Related Work
	5 Experiments
	6 Conclusion
	A Experimental details
	A.1 Hessian approximation
	A.2 Out-of-distribution
	A.3 Missing data imputation
	A.4 Semi-supervised learning

	B Laplace Approximation
	B.1 If bold0mu mumu subappendix* is a local maxima
	B.2 If bold0mu mumu subappendix* is not a local maxima

	C Extended related work
	C.1 Differences with Laplace Redux
	C.2 Differences with Variational Adaptive Newton Method
	C.3 Differences with Noisy Natural Gradient
	C.4 Connection with Adam
	C.5 Connection with Bayes by Backpropagation

	D Model
	D.1 Overview
	D.2 Objective
	D.3 Joint distribution for a fixed datapoint
	D.4 Linear f
	D.5 Iterative learning
	D.5.1 Improved update rule

	E Fast Hessian
	E.1 Jacobian of a Neural Network
	E.2 Jacobian per output
	E.3 Jacobian per layer
	E.3.1 Jacobian of a layer w.r.t. to input
	E.3.2 Jacobian of a layer w.r.t. to parameters

	E.4 Hessian of a Neural Network
	E.4.1 Fast approximated version of the Algorithm

	E.5 Hessian of a Reconstruction Loss

	F Intuition on optimization of variance in VAEs

