
ARTICLE

Learning meaningful representations of protein
sequences
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How we choose to represent our data has a fundamental impact on our ability to subse-

quently extract information from them. Machine learning promises to automatically deter-

mine efficient representations from large unstructured datasets, such as those arising in

biology. However, empirical evidence suggests that seemingly minor changes to these

machine learning models yield drastically different data representations that result in dif-

ferent biological interpretations of data. This begs the question of what even constitutes the

most meaningful representation. Here, we approach this question for representations of

protein sequences, which have received considerable attention in the recent literature. We

explore two key contexts in which representations naturally arise: transfer learning and

interpretable learning. In the first context, we demonstrate that several contemporary

practices yield suboptimal performance, and in the latter we demonstrate that taking

representation geometry into account significantly improves interpretability and lets the

models reveal biological information that is otherwise obscured.
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D ata representations play a crucial role in the statistical
analysis of biological data. At its core, a representation is
a distillation of raw data into an abstract, high-level and

often lower-dimensional space that captures the essential features
of the original data. This can subsequently be used for data
exploration, e.g. through visualization, or task-specific predictions
where limited data is available. Given the importance of repre-
sentations it is no surprise that we see a rise in biology of
representation learning1, a subfield of machine learning where the
representation is estimated alongside the statistical model. In the
analysis of protein sequences in particular, the last years have
produced a number of studies that demonstrate how repre-
sentations can help extract important biological information
automatically from the millions of observations acquired through
modern sequencing technologies2–14. While these promising
results indicate that learned representations can have substantial
impact on scientific data analysis, they also beg the question: what
is a good representation? This elementary question is the focus of
this paper.

A classic example of representation learning is principal
component analysis (PCA)15, which learns features that are lin-
early related to the original data. Contemporary techniques dispel
with the assumption of linearity and instead seek highly non-
linear relations1, often by employing neural networks. This has
been particularly successful in natural language processing (NLP),
where representations of word sequences are learned from vast
online textual resources, extracting general properties of language
that support subsequent specific language tasks16–18. The
success of such word sequence models has inspired its use for
modeling biological sequences, leading to impressive results in
application areas, such as remote homologue detection19, func-
tion classification20, and prediction of mutational effects6.

Since representations are becoming an important part of bio-
logical sequence analysis, we should think critically about whether
the constructed representations efficiently capture the informa-
tion we desire. This paper discusses this topic, with focus on
protein sequences, although many of the insights apply to other
biological sequences as well13. Our work consists of two parts.
First, we consider representations in the transfer-learning setting.
We investigate the impact of network design and training pro-
tocol on the resulting representation, and find that several current

practices are suboptimal. Second, we investigate the use of
representations for the purpose of data interpretation. We show
that explicit modeling of the representation geometry allows us to
extract robust and identifiable biological conclusions. Our results
demonstrate a clear potential for designing representations
actively, and for analyzing them appropriately.

Results
Representation learning has at least two uses: In transfer learning
we seek a representation that improves a downstream task, and in
data interpretation the representation should reveal the data’s
underlying patterns, e.g. through visualization. Since the first has
been at the center of recent literature4,5,8–10,20,21, we place our
initial focus there, and turn later to data interpretation.

Representations for transfer learning. Transfer learning
addresses the problems caused by limited access to labeled data.
For instance, when predicting the stability of a given protein, we
only have limited training data available as it is experimentally
costly to measure stability. The key idea is to leverage the many
available unlabeled protein sequences to learn (pre-train) a gen-
eral protein representation through an embedding model, and
then train a problem-specific task model on top using the limited
labeled training data (Fig. 1).

In the protein setting, learning representations for transfer
learning can be implemented at different scopes. It can be
addressed at a universal scope, where representations are learned
to reflect general properties of all proteins, or it can be
implemented at the scope of an individual protein family, where
an embedding model is pre-trained only on closely related
sequences. Initially, we will focus on universal setting, but will
return to family-specific models in the second half of the paper.

When considering representations in the transfer-learning
setting, the quality, or meaningfulness, of a representation is
judged merely by the level of predictive performance obtained by
one or more downstream tasks. Our initial task will therefore be
to study how this performance depends on common modeling
assumptions. A recent study established a benchmark set of
predictive tasks for protein sequence representations5. For our
experiments below, we will consider three of these tasks, each
reflecting a particular global protein property: (1) classification of

Fig. 1 Representations of protein sequences. During the pre-training phase, a model is trained to embed or encode input protein sequences (s1, s2, . . . , sL), to
a local representation (r1, r2, . . . , rL), after which it is decoded to be as similar as possible to the original sequence. After the pre-training stage, the learned
representation can be used as a proxy for the raw input sequence, either for direct visual interpretation, or as input to a supervised model trained for a
specific task (transfer-learning). When working in the transfer-learning setting, it is possible to also update the parameters of the encoder while training on
the specific task, thereby fine-tuning the representation to the task of interest. For interpretation or for prediction of global properties of proteins, the local
representations ri, are aggregated into a global representation, often using a simple procedure, such as averaging over the sequence length. For
visualization purposes these global representations are then often dimensionality reduced using standard procedures, such as PCA or t-SNE.
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protein sequences into a set of 1195 known folds22, (2)
fluorescence prediction for variants of the green fluorescent
protein in Aequorea victoria23, and 3) prediction of the stability of
protein variants obtained in high throughput experimental design
experiments24.

Fine-tuning can be detrimental to performance. In the transfer-
learning setting, the pre-training phase and the task learning
phase are conceptually separate (Fig. 1, left), but it is common
practice to fine-tune the embedding model for a given task, which
implies that the parameters of both models are in fact optimized
jointly5. Given the large number of parameters typically
employed in embedding models, we hypothesize that this can lead
to overfitted representations, at least in the common scenario
where only limited data is available for the task learning phase.

To test this hypothesis we train three models, an LSTM25, a
Transformer26, and a dilated residual network (Resnet)27 on a
diverse set of protein sequences extracted from Pfam28, where we
either keep the embedding model fixed (FIX) or fine-tune it to the
task (FIN). To evaluate the impact of the representation model
itself, we consider both a pre-trained version (PRE) and randomly
initialized representation models that are not trained on data
(RNG). Such models will map similar inputs to similar
representations, but should otherwise not perform well. Finally,
as a naive baseline representation, we consider the direct one-hot
encoding of each amino acid in the sequence. In all cases, we
extract global representations using an attention-based averaging
over local representations (Fig. 1, right).

Table 1 shows that fine-tuning the embedding clearly reduces
test performance in two out of three tasks, confirming that fine-
tuning can have significant detrimental effects in practice.
Incidentally, we also note that the randomly initialized repre-
sentation performs remarkably well in several cases, which echoes
results known from random projections29.

Implication: fine-tuning a representation to a specific task
carries the risk of overfitting, since it often increases the number
of free parameters substantially, and should therefore take place
only under rigorous cross validation. Fixing the embedding model
during task-training should be the default choice.

Constructing a global representation as an average of local
representations is suboptimal. One of the key modeling choices
for biological sequences is how to handle their sequential nature.
Inspired by developments in natural language processing, most of
the recent representation learning advances for proteins use
language models, which aim to reproduce their own input, either
by predicting the next character given the sequence observed so
far, or by predicting the entire sequence from a partially obscured
input sequence. The representation learned by such models is a
sequence of local representations (r1, r2, . . . , rL) each corre-
sponding to one amino acid in the input sequence (s1, s2, . . . , sL).
To successfully predict the next amino acid, ri should contain

information about the local neighborhood around si, together
with some global signal reflecting properties of the complete
sequence. In order to obtain a global representation of the entire
protein, the variable number of local representations must
be aggregated into a fixed-size global representation. A priori,
we would expect this choice to be quite critical to the nature of
the resulting representation. Standard approaches for this
operation include averaging with uniform4,10 or learned
attention5,30,31 weights or simply using the maximum value.
However, the complex non-local interactions known to occur in a
protein suggest that it could be beneficial to allow for more
complex aggregation functions. To investigate this issue, we
consider two alternative strategies (Fig. 1, right):

The first strategy (Concat) avoids aggregation altogether by
concatenating the local representations r= [r1, r2, . . . , rL, p, p, p]
(with additional padding p to adjust for variable sequence-
length). This approach preserves all information stored in the
local ris. To make a fair comparison to the averaging strategy, we
maintain the same overall representation size by scaling down the
size of the local representations ri. In our case, with a global
representation size of 2048, and a maximal sequence length of
512, this means that we restrict the local representation to only
four dimensions.

As a second strategy (Bottleneck), we investigate the possibility
of learning the optimal aggregation operation, using an
autoencoder, a simple neural network that as output predicts its
own input, but forces it through a low-dimensional bottleneck32.
The model thus learns a generic global representation during pre-
training, in contrast to the strategies above in which the global
representation arises as a deterministic operation on the learned
local representations. We implement the Bottleneck strategy
within the Resnet (convolutional) setting, where we have well-
defined procedures for down- and upsampling the sequence
length.

When comparing the two proposed aggregation strategies on
the three protein prediction tasks (Stability, Fluorescence, Remote
Homology), we observe a quite dramatic impact on performance
(Table 2). The Bottleneck strategy, where the global representa-
tion is learned, clearly outperforms the other strategies. This was
expected, since already during pre-training this model is
encouraged to find a more global structure in the representations.
More surprising are the results for the Concat strategy, as these
demonstrate that even if we restrict the local representation to be
much smaller than in standard sequential models, the fact that
there is no loss of information during aggregation has a
significant positive influence on the downstream performance.

Implication: if a global representation of proteins is required, it
should be learned rather than calculated as an average of local
representations.

Reconstruction error is not a good measure of representation
quality. Any choice of embedding model will have a number of

Table 1 The impact of fine-tuning and initialization on downstream model performance.

Remote Homology Fluorescence Stability

Resnet LSTM Trans Resnet LSTM Trans Resnet LSTM Trans

PRE+FIX 0.27 0.37 0.27 0.23 0.74 0.48 0.65 0.70 0.62
PRE+FIN 0.17 0.26 0.21 0.21 0.67 0.68 0.73 0.69 0.73
RNG+FIX 0.03 0.10 0.04 0.25 0.63 0.14 0.21 0.61 –
RNG+FIN 0.10 0.12 0.09 − 0.28 0.21 0.22 0.61 0.28 − 0.06
Baseline 0.09 (Accuracy) 0.14 (Correlation) 0.19 (Correlation)

The embedding models were either randomly initialized (RNG) or pre-trained (PRE), and subsequently either fixed (FIX) or fine-tuned to the task (FIN). The baseline is a simple one-hot encoding of the
sequence. Although fine-tuning is beneficial on some task/model combinations, we see clear signs of overfitting in the majority of cases (best results in bold).
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hyperparameters, such as the number of nodes in the neural
network or the dimensionality of the representation itself. How
do we choose such parameters? A common strategy is to make
these choices based on the reconstruction capabilities of the
embedding model, but is it reasonable to expect that this is also
the optimal choice from the perspective of the downstream task?

As an example, we will consider the task of finding the optimal
representation size. We trained and evaluated several Bottleneck
Resnet models with varying representation dimensions and
applied them to the three downstream tasks. The results show a
clear pattern where the reconstruction accuracy increases
monotonically with latent size, with the sharpest increase in the
region of 10 to 500, but with marginal improvements all the way
up to the maximum size of 10,000 (Supplementary Fig. S1).
However, if we consider the three downstream tasks, we see that
the performance in all three cases starts decreasing at around size
500–1000, thus showing a discrepancy between the optimal
choice with respect to the reconstruction objective and the
downstream task objectives. It is important to stress that the
reconstruction accuracy is measured on a validation set, so our
observation is not a matter of overfitting to the training data. We
employed a carefully constructed train/validation/test partition of
UniProt33 provided by Armenteros et al.21, to avoid overlap
between the sets. The results thus show that there is enough data
for the embedding model to support a large representation size,
while the downstream tasks prefer a smaller input size. The exact
behavior will depend on the task and the available data for the
two training phases, but we can conclude that there is generally
no reason to believe that reconstruction accuracy and the
downstream task accuracy will agree on the optimal choice of
hyperparameters. Similar findings were reported in the TAPE
study5.

Implication: in transfer learning, optimal values for hyperpara-
meters (e.g. representation size) can in general not be estimated
during pre-training. They must be tuned for the specific task.

Representations for data interpretation: shaped by scope,
model architecture, and data preprocessing. We now return to
the use of representations for data interpretation. If a repre-
sentation accurately describes the structure in the underlying
dataset, we might expect it to be useful not only as input to a
downstream model, but also as the basis for direct interpretation,

for instance through visualization. In this context, it is important
to realize that different modeling choices can lead to dramatically
different interpretations of the same data. More troubling, even
when using the same model assumptions, repeated training
instances can also deviate substantially, and we must therefore
analyze our interpretations with care. In the following, we explore
these effects in detail.

Recent models for proteins tend to learn universal, cross-family
representations of protein space. In bioinformatics, there is,
however, a long history of analyzing proteins per family. Since the
proteins in the same family share a common three-dimensional
structure, an underlying correspondence exists between positions
in different sequences, which we can approximate using multiple
sequence alignment techniques. After establishing such an
alignment, all input sequences will have the same length, making
it possible to use simple fixed-size input models, rather than the
sequential models discussed previously. One advantage is that
models can now readily detect patterns at and correlations
between absolute positions of the input, and directly observe both
conservation and coevolution. In terms of interpretability, this
has clear advantages. An example of this approach is the
DeepSequence model2,12, in which the latent space of a
Variational Autoencoder (VAE) was shown to clearly separate
the input sequences into different phyla, and capture covariance
among sites on par with earlier coevolution methods. We
reproduce this result using a VAE on the β-lactamase family
PF00144 from PFAM28, using a 2-dimensional latent space
(Fig. 2, bottom right).

If we use the universal, full-corpus, sequence models (LSTM,
Resnet, Transformer) and the Bottleneck Resnet from the
previous sections to embed the same set of proteins from the β-
lactamase family and use t-SNE34 to reduce the dimensionality of
the protein representations into a two-dimensional space, we see
no clear phylogenetic separation in the case of LSTM and Resnet,
and very little for the Transformer and the Bottleneck Resnet
(Fig. 2, top row). The fact that the phyla are much less clearly
resolved in these sequential models is perhaps unsurprising, since
these models have been trained to represent the space of all
proteins, and therefore do not have the same capacity to separate
details of a single protein family. Indeed, to compensate for this,
recent work has introduced the concept of evo-tuning, where a
universal representation is fine-tuned on a single protein
family4,35.

When training exclusively on β-lactamase sequences (Fig. 2,
bottom row) we observe more structure for all models, but only
the Transformer and Bottleneck Resnet are able to fully separate
the different phyla. Comparing this to an alignment-based VAE
model, we still see large differences in protein representations,
despite the fact that all models now are trained on the same
corpus of proteins.

The observed differences between representations is a com-
bined effect arising from the following factors: (1) the inductive
biases underlying the different model architectures, (2) the
domain-specific knowledge inserted through preprocessing
sequences when constructing an alignment, and (3) the post-
processing of representation space to make it amenable to
visualization in 2D (the three left-most columns in Fig. 2 were
processed using t-SNE, see Supplementary Figs. S3 and S4 for
equivalent plots using PCA). Often, these contributions are
interdependent, and therefore difficult to disentangle. For
instance, the VAE can use a simple model architecture only
because the sequences have been preprocessed into an alignment.
Likewise, the simplicity of the VAE makes it possible to limit
the size of the bottleneck to only 2 dimensions, and thereby
avoid the need for post-hoc dimensionality reduction, which can
itself have a substantial impact on the obtained representation

Table 2 Comparison of strategies for obtaining global,
sequence-length independent representations on three
downstream tasks5.

Stability
(Corr.)

Fluorescence
(Corr.)

Homology (Acc.)

Mean 0.42 0.19 0.27
Attention 0.65 0.23 0.27
Light Att. 0.66 0.23 0.27
Maximum 0.02 0.02 0.28
MeanMax 0.37 0.15 0.26
KMax 0.10 0.11 0.27
Concat 0.74 0.69 0.34
Bottleneck 0.79 0.78 0.41

The first six are variants of averaging used in the literature, using uniform weights (Mean), some
variant of learned attention weights (Attention5, Light Attention30), or averages of the local
representation with the highest attention weight (Maximum, MeanMax, KMax(K = 5)). They all
use the same pre-trained and backbone Resnet model, while the last two entries use modified
Resnet architectures using either a very low-dimensional feature representation (Concat), or an
autoencoder-like structure downsample the representation length. In all cases, training
proceeded without fine-tuning. The results demonstrate that simple alternatives such as
concatenating smaller local representations (Concat) or changing the model to directly learn a
global representation (Bottleneck) can have a substantial impact on performance (best results
in bold).
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(Supplementary Figs. S3 and S4). Ideally, we would wish to
directly obtain 2D representations for the sequential models as
well, but all attempts to train variants of the LSTM, Resnet, and
Transformer models with 2D latent representations were
unfruitful. This suggests that the additional complexity inherent
in the sequential modeling of unaligned sequences places
restrictions on how simple we can make the underlying latent
representation (see discussion in Supplementary Material).

Continuous progress is being made in the area of sequential
modeling and its use for protein representation learning6–8,10,36,37.
In particular, transformers, when scaled up to hundreds of
millions of parameters, have been shown capable of recovering the
covariances among sites in a protein37,38. When embedding the β-
lactamase sequences using these large pre-trained transformer
models, we indeed also see an improved separation of phyla
(Supplementary Fig. 5). It remains an open question whether
representations extracted from such large transformer models will
eventually be able to capture more information than what can be
extracted using a simple model and a high-quality sequence
alignment.

Implication: the scope of data (all proteins vs. single protein
families), whether data is preprocessed into alignments, the
model architecture, and potential post hoc dimensionality
reduction all have a fundamental impact on the resulting
representations, and the conclusions we can hope to draw from
them. However, these contributions are often interdependent and
difficult to disentangle in practice.

Representation space topology carries relevant information.
The star-like structure of the VAE representation in Fig. 2, and
the associated phyla color-coding strongly suggest that the
topology of this particular representation space is related to the
tree topology of the evolutionary history underlying the protein
family39. As an example of the potential and limits to repre-
sentation interpretability, we will proceed with a more detailed
analysis of this space.

To explore the topological origin of the representation space,
we estimate a phylogenetic tree of a subset of our input data
(n= 200), and encode the inner nodes of the tree to our latent
space using a standard ancestral reconstruction method (see
Methods). Although the fit is not perfect—a few phyla are split

and placed on opposite sides of the origin—there is generally a
good correspondence (Fig. 3). We see that the reconstructed
ancestors to a large extent span a meaningful tree, and it is thus
clear that the representation topology in this case reflects relevant
topological properties from the input space.

Implication: Although neural networks are high capacity
function estimators, we see empirically that topological constraints
in input space are maintained in representation space. The latent
manifold is thus meaningful and should be respected when relying
on the representation for data interpretation.

Geometry gives robust representations. Perhaps the most
exciting prospect of representation learning is the possibility of
gaining new insights through the interpretation and manipulation
of the learned representation space. In NLP, the celebrated
word2vec model40 demonstrated that simple arithmetic opera-
tions on representations yielded meaningful results, e.g. “Paris -
France + Italy = Rome”, and similar results are known from

Fig. 2 Latent embedding of the protein family of β-lactamase, color-coded by taxonomy at the phyla level. In the upper row, we embed the family using
sequential models (LSTM, Resnet, Transformer) trained on the full corpus of protein families. In the lower row we train the same sequential models again
only on the β-lactamase family (PFAM PF0014428). For the models in the first three columns, a simple mean strategy is employed to extract a global
representation from local representations, while the fourth column uses the Bottleneck aggregation method. Finally, in the last column, we show the result
of preprocessing the sequences in a multiple sequence alignment and applying a dense variational autoencoder (VAE) model. We see clear differences in
how well the different phyla are separated, which demonstrates the impact that model choice and data preprocessing can have on the learned
representation.

Fig. 3 A phylogenetic tree encoded into the latent representation space.
The representation and colors correspond to Fig. 2I. The internal nodes
were determined using ancestral reconstruction after inferring a
phylogenetic tree (branches encoded in black, leaf nodes in gray).
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image analysis. The ability to perform such operations on proteins
would have substantial impact on protein engineering and design,
for instance making it possible to interpolate between biochemical
properties or functional traits of a protein. What is required of our
representations to support such interpolations?

To qualify the discussion, we note that standard arithmetic
operations such as addition and subtraction rely on the
assumption that the learned representation space is Euclidean.
The star-like structure observed for the alignment-based VAE
representation in Fig. 3 suggests that a Euclidean interpretation
may be misleading: If we define similarities between pairs of
points through the Euclidean distance between them, we
implicitly assume straight-line interpolants that pass through
uncharted territory in the representation space when moving
between ‘branches’ of the star-like structure. This does not seem
fruitful.

Mathematically, the Euclidean interpretation is also proble-
matic. In general, the latent variables of a generative model are
not statistically identifiable, such that it is possible to deform the
latent representation space without changing the estimated data
density41,42. The Euclidean topology is also known to cause
difficulties when learning data manifolds with different
topologies43,44. With this in mind, the Euclidean assumption is
difficult to justify beyond arguments of simplicity, as Euclidean
arithmetic is not invariant to general deformations of the
representation space. It has recently been pointed out that
shortest paths (geodesics) and distances between representation
pairs can be made identifiable even if the latent coordinates of the
points themselves are not42,45. The trick is to equip the learned
representation with a Riemannian metric which ensures that
distances are measured in data space along the estimated
manifold. This result suggests that perhaps a Riemannian set of
operations is more suitable for interacting with learned
representations than the usual Euclidean arithmetic operators.

To investigate this hypothesis, we develop a suitable Rieman-
nian metric, such that geodesic distances correspond to expected
distances between one-hot encoded proteins, which are integrated
along the manifold. The VAE defines a generative distribution
p(X∣Z) that is governed by a neural network. Here Z is a latent
variable, and X a one-hot encoded protein sequence. To define a
notion of distance and shortest path we start from a curve c in
latent space, and ask what is its natural length? We parametrize
the curve as c : ½0; 1� ! Z, where Z is the latent space, and write
ct to denote the latent coordinates of the curve at time t. As the
latent space can be arbitrarily deformed it is not sensible to
measure the curve length directly in the latent space, and the
classic geometric approach is to instead measure the curve length
after a mapping to input space42. For proteins, this amounts to
measuring latent curve lengths in the one-hot encoded protein

space. The shortest paths can then be found by minimizing curve
length, and a natural distance between latent points is the length
of this path.

An issue with this approach is that the VAE decoder is
stochastic, such that the decoded curve is stochastic as well. To
arrive at a practical solution, we recall that shortest paths are also
curves of minimal energy42 defined as

EðcÞ ¼ ∑
T�1

t¼1
jjXtþ1 � Xtjj2; ð1Þ

where Xt ~ p(X∣Z= ct) denote the protein sequence correspond-
ing to latent coordinate ct. Due to the stochastic decoder, the
energy of a curve is a random variable. For continuous X, recent
work45 has shown promising results when defining shortest paths
as curves with minimal expected energy. In the Methods section
we derive a similar approach for discrete one-hot encoded X and
provide the details of the resulting optimization problem and its
numerical solution.

To study the potential advantages of using geodesic over
Euclidean distances, we analyze the robustness of our proposed
distance. Since VAEs are not invariant to reparametrization we
do not expect pairwise distances to be perfectly preserved between
different initialization of the same model, but we hypothesize that
the geodesics should provide greater robustness. We train the
model 5 times with different seeds (see Supplementary Fig. S9)
and calculate the same subset of pairwise distances. We normalize
each set of pairwise distances by their mean and compute the
distance standard deviation across trained models. When using
normalized Euclidean distance we observe a mean standard
deviation of 0.23, while for normalized geodesics distances we
obtain a value of 0.11 (Fig. 4a). This significant difference
indicates that geodesic distances are more robust to model
retraining than their Euclidean counterparts.

Implication: distances and interpolation between points in
representation space can be made robust by respecting the
underlying geometry of the manifold.

Geodesics give meaning to representations. To further investi-
gate the usefulness of geodesics, we revisit the phylogenetic
analysis of Fig. 3, and consider how well distances in repre-
sentation space correlate with the corresponding phylogenetic
distances. The first two panels of Fig. 4b show the correlation
between 500 subsampled Euclidean distances and phylogenetic
distances in a Transformer and a VAE representation, respec-
tively. We observe very little correlation in the Transformer
representation, while the VAE fares somewhat better. The third
panel of Fig. 4b shows the correlation between geodesic distances
and phylogenetic distances for the VAE. We observe that the
geodesic distances significantly increases the linear correlation for

Fig. 4 Geodesics provide more robust and meaningful distances in latent space. a robustness of distances in latent space when calculated between the
same data points embedded using models trained with different seeds. The plots show the distribution of standard deviations of normalized distances over
five different models (n = 500 sampled distances, inner black bar encodes median and upper/lower quartiles). b Correlation between distances in latent
space and phylogenetic distances, where standard deviations are calculated over 5 subsets of distances sampled with different seeds. Latent points were
selected with probability proportional to their norm, to ensure a selection of distances covering the full range of latent space. The values for Transformer
and VAE were calculated as Euclidean distances in their representation space (512 and 2 dimensional, respectively).
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particular short-to-medium distances. Finally, in the last panel,
we include as a baseline the expected Hamming distance, i.e.
latent points decoded into their categorical distribution from
which we draw 10 samples/sequences and calculate the average
Hamming distance. We observe that the geodesics in latent space
are a reasonable proxy for this expected distance in output space.

Visually, the correspondence is also striking (Fig. 5). Well-
optimized geodesics follow the manifold very closely, and to a
large extent preserve the underlying tree structure. We see that
the irregularities described before (e.g. the incorrect placement of
the yellow subtree in the top right corner) are recognized by both
the phylogenetic reconstruction and our geodesics, which is
visually clear by the thick bundle of geodesics running diagonally
to connect these regions.

Implication: Analyzing geodesics distances instead of Euclidean
distances in representation space better reflects the underlying
manifold allowing us to extract biological distances that are more
meaningful.

Data preprocessing affects the geometry. We have established
that the preprocessing of protein sequences into an alignment has
a strong effect on the learned representation. But how do align-
ment quality and sequence selection biases affect the learned
representations? To build alignments, it is common to start with a
single query sequence, and iterative search for sequences similar to
this query. If the intent is to make statements only about this
particular query sequence (e.g. predicting effects of variants rela-
tive to this protein) then a common practice is to remove columns
in the alignment for which the query sequence has a gap. This
query-centric bias is further enhanced by the fact that the search
for relevant sequences occurs iteratively based on similarity, and is
thus bound to have greater sequence coverage for sequences close
to the query. These effects would suggest that representations
learned from query-centric alignments might be better descrip-
tions of sequences close to the query.

To test this hypothesis, we look at a more narrow subset of the β-
lactamase family, covering only the class A β-lactamases. This subset
was included as part of the DeepSequence paper2 and will serve as
our representative example of a query-centric alignment. The class A
β-lactamases consist of two subclasses, A1 and A2, which are known
to display consistent differences in multiple regions of the protein.
The query sequence in this case is the TEM from Escherichia coli,
which belongs to subclass A1. Following earlier characterization of

the differences between the subclasses, we consider a set of
representative sequences from each of the subclasses, and probe
how they are mapped to representation space (Class A1: TEM-1,
SHV-1, PSE-1, RTG-2, CumA, OXY-1, KLUA-1, CTX-M-1,
NMCA, SME-1, KPC-2, GES-1, BEL-1, BPS-1. Class A2: PER-1,
CEF-1, VEB-1, TLA-2, CIA-1, CGA-1, CME-1, CSP-1, SPU-1, TLA-
1, CblA, CfxA, CepA). When training a representation model on the
original alignment (Fig. 6a), we indeed see that the ability to
reconstruct (decode) meaningful sequences from representation
values differs dramatically between the A1 and A2 classes.

It is common practice to weigh input sequences in alignments
by their density in sequence space, which compensates for the
sampling bias mentioned above46. While this is known to
improve the quality of the model for the variant effect
prediction2, it only partially compensates for the underlying bias
between the classes in our case (Fig. 6b). If we instead retrieve
full-length sequences for all proteins, redo the alignment using
standard software (Clustal Omega47), and maintain the full
alignment length, we see that the differences between the classes
becomes much smaller (Fig. 6c, d). The reason is straightforward:
as the distance from the query sequence increases, larger parts of

Fig. 5 Shortest paths (geodesics) between representations of β-lactamase in a VAE. The Riemannian metric corresponds to measuring the expected
distance between one-hot encoded proteins measured along the estimated manifold. The geodesics generally move along the star-shaped structure of the
data similarly to the estimated phylogenetic tree, suggesting that the geodesics are well-suited for interpolating proteins.

Fig. 6 The effect of alignment preprocessing on the ability of
representations to reliably decode back to protein sequences. Box plots
(median, upper/lower quartiles, 1.5 interquartile range) show the
distribution of reconstruction accuracies across the two subclasses of β-
lactamase (A1: n = 14 sequences, A2: n = 13 sequences). Query-centric
denotes an alignment where columns in the alignment have been removed
if they contain a gap in the query sequence of interest. Reweighted refers to
the standard practice of reweighting protein sequences based on similarity
to other sequences. All four cases contain the same protein sequences.
A2 sequences are seen to have substantially worse representations when
alignments are focused on a query from the A1 class.
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a protein will occur within the regions corresponding to gaps in
the query sequence. If such columns are removed, we discard
more information about the distant sequences, and therefore see
larger uncertainty (i.e. entropy) for the decoder of such latent
values. Note that these differences in representation quality are
not immediately clear through visual inspection alone (Supple-
mentary Fig. S7).

Implication: Alignment-based representations depend critically
on the nature of the multiple sequence alignment. In particular,
training on query-centric alignments results in representations
that primarily describe sequence variation around a single query
sequence. In general, density-based reweighting of sequences
should be used to counter-selection bias.

Geodesics provide more meaningful interpolation. The output
distributions obtained by decoding from representation space
provide interpretable insights into the nature of the representa-
tion. We illustrate this by constructing an interpolant along the
geodesic from a subclass A1 member to a subclass A2 member
(Fig. 7a). We calculate the entropy of the output distribution
(summed over all sequence positions) along the interpolant and
observe that there is a clear transition with elevated entropy
around point 5 (highlighted in red). To investigate which regions
of the protein are affected, we calculate the Kullback-Leibler
divergence between the output distributions of the endpoints
(Fig. 7b). Zooming in on these particular regions (Fig. 7c, left),
and following them along the interpolant, we see that the
representation naturally captures transitions between amino acid
preferences at different sites. Most of these correspond to sites
already identified in prior literature, for instance disappearance of
the cysteine at position 77, the switch between N→D at position
136, and D→N at position 17948. We also see an example where
a region in one class aligns to a gap in the other (position 50-52).
The linear interpolation (Fig. 7c, right), has similar statistics at the
endpoints, but displays an almost trivial interpolation trajectory,
which effectively interpolates linearly between the probability
levels of the output classes at the endpoints (note for instance the
minor preference for cysteine in the A2 region at position 77).

Implication: Geodesics provide natural interpolants between points
in representation space, avoiding high entropy regions, and thereby
providing interpolated values that are better supported by data.

Discussion
Learned representations of protein sequences can substantially
improve systems for making biological predictions, and may also
help to reveal previously uncovered biological information. In this
paper, we have illuminated parts of the answer to the question of
what constitutes a meaningful representation of proteins. One of
the conclusions is that the question itself does not have a single
general answer, and must always be qualified with a specification
of the purpose of the representation. A representation that is
suitable for making predictions may not be optimal for a human
investigator to better understand the underlying biology, and vice
versa. The enticing idea of a single protein representation for all
tasks thus seems unworkable in practice.

Designing purposeful representations. Designing a representa-
tion for a given task requires reflection over which biological
properties we wish the representation to encapsulate. Different
biological aspects of a protein will place different demands on the
representations, but it is not straightforward to enforce specific
properties in a representation. We can, however, steer the
representation learning by (1) picking appropriate model archi-
tectures, (2) preprocessing the data, (3) choosing suitable objec-
tive functions, and (4) placing prior distributions on parts of the
model. We discuss each of these in turn.

Informed network architectures can be difficult to construct
as the usual neural network ‘building blocks’ are fairly elementary
mathematical functions that are not immediately linked to high-
level biological information. Nonetheless, our discussion of
length-invariant sequence representations is a simple example
of how one might inform the model architecture of the biology of
the task. It is generally acknowledged that global protein
properties are not linearly related to local properties. It is
therefore not surprising when we show that the model
performance significantly improves when we allow the model to
learn such a nonlinear relationship instead of relying on the
common linear average of local representations. It would be
interesting to push this idea beyond the Resnet architecture that
we explored here, in particular in combination with the recent
large-scale transformer-based language models. We speculate that
while similar ‘low-hanging fruit’ may remain in currently applied
network architectures, they are limited, and more advanced tools
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are needed to encode biological information into network
architectures. The internal representations in attention-based
architectures have been shown to recover known physical
interactions between proteins37,38, opening the door to the
incorporation of prior information about known physical
interactions in a protein. Recent work on permutation and
rotation invariance/equivariance in neural networks49,50 hold
promise, though they have yet to be explored exhaustively in
representation learning.

Data preprocessing and feature engineering is frowned upon
in contemporary ‘end-to-end’ representation learning, but it
remains an important part of model design. In particular,
preprocessing using the vast selection of existing tools from
computational biology is a valuable way to encode existing
biological knowledge into the representation. We saw a significant
improvement in the representation capabilities of unsupervised
models when trained on aligned protein sequences, as this injects
prior knowledge about comparable sequence positions in a set of
sequences. While recent work is increasingly working towards
techniques for learning such signals directly from data7,37,38, it
remains unclear if the advantages provided by multiple
alignments can be fully encapsulated by these methods. Other
preprocessing techniques, such as the reweighing of sequences,
are currently also dependent on having aligned sequences. These
examples suggests that if we move too fast towards ‘end-to-end’
learning, we risk throwing the baby out with the bathwater, by
discarding years of experience endowed in existing tools.

Relevant objective functions are paramount to any learning
task. Although representation learning is typically conducted
using a reconstruction loss, we demonstrate that optimal
representations according to this objective are generally sub-
optimal for any specific transfer-learned task. This suggests that
hyper-parameters of representations should be chosen based on
downstream task-specific performance, rather than reconstruc-
tion performance on a hold-out set. This is, however, a delicate
process, as optimizing the parameters of the representation model
on the downstream task is associated with a high risk of
overfitting. We anticipate that principled techniques for combin-
ing reconstruction objectives on the large unsupervised data sets
with task-specific objectives in a semi-supervised learning setting
will provide substantial benefits in this area51.

Informative priors can impose softer preferences than those
encoded by hard architecture constraints. The Gaussian prior in
VAEs is such an example, though its preference is not guided by
biological information, which appears to be a missed opportunity.
In the studies of β-lactamase, we, and others2,39, observe a
representation structure that resembles the phylogenetic tree
spanned by the evolution of the protein family. Recent hyperbolic
priors52 that are designed to emphasize hierarchies in data may
help to more clearly bring forward such evolutionary structure.
Since we observe that the latent representation better reflects
biology when endowed with a suitable Riemannian metric, it may
be valuable to use corresponding geometric priors53.

Analyzing representations appropriately. Even with the most
valiant efforts to incorporate prior knowledge into our repre-
sentations, they must still be interpreted with great care. We
highlight the particular example of distances in representation
space, and emphasize that the seemingly natural Euclidean dis-
tances are misleading. The non-linearity of encoders and
decoders in modern machine learning methods means that
representation spaces are generally non-Euclidean. We have
demonstrated that by bringing the expected distance from the
observation space into the representation space in the form of a
Riemannian metric, we obtain geodesic distances that correlate

significantly better with phylogenetic distances than what can be
attained through the usual Euclidean view. This is an exciting
result as the Riemannian view comes with a set of natural
operators akin to addition and subtraction, such that the repre-
sentation can be engaged with operationally. We expect this to be
valuable for e.g. protein engineering, since it gives an operational
way to combine representations from different proteins.

In this study, we employed our geometric analysis only on the
latent space of a variational autoencoder, which is well-suited due to
its smooth mapping from a fixed dimensional latent space to a fixed
dimensional output space. Expanding beyond single protein
families is hindered by the fact that we cannot decode from an
aggregated global representation in a sequential language model. A
natural question is whether Bottleneck strategies like the one we
propose could make such analysis possible. If so, it would present
new possibilities for defining meaningful distances between remote
homologues in latent space19, and potentially allow for improved
transfer of GO/EC annotations between proteins.

Finally, the geometric analysis comes with several implications
that are relevant beyond proteins. It suggests that the commonly
applied visualizations where latent representations are plotted as
points on a Euclidean screen may be highly misleading. We
therefore see a need for visualization techniques that faithfully
reflect the geometry of the representations. The analysis also
indicates that downstream prediction tasks may gain from
leveraging the geometry, although standard neural network
architectures do not yet have such capabilities.

Methods
Variational autoencoders. A variational autoencoder assumes that data X is
generated from some (unknown) latent factors Z though the process pθ(X∣Z). The
latent variables Z can be viewed as the compressed representation of X. Latent
space models try to model the joint distribution of X and Z as pθ(X, Z)= pθ(Z)
pθ(X∣Z). The generating process can then be viewed as a two-step procedure: first a
latent variable Z is sampled from the prior and then data X is sampled from the
conditional pθ(X∣Z) (often called the decoder). Since X is discrete by nature,
pθ(X∣Z) is modeled as a Categorical distribution pθ(X∣Z) ~ Cat(C, lθ(Z)) with C
classes and lθ(Z) being the log-probabilities for each class. To make the model
flexible enough to capture higher-order amino acid interactions, we model lθ(Z) as
a neural network. Even though data X is discrete, we use continuous latent vari-
ables Z ~N(0, 1).

Construction of entropy network. To ensure that our VAE decodes to high
uncertainty in regions of low data density, we construct an explicit network archi-
tecture with this property. That is, the network pθ(X∣Z) should be certain about its
output in regions where we have observed data, and uncertain in regions where we
have not. This has been shown to be important to get well-behaved Riemannian
metrics42,54. In a standard VAE with posterior modeled as a normal distribution
N ðμθðZÞ; σ2θðZÞÞ, this amounts to constructing a variance network σ2θðZÞ that
increases away from data45,55. However, no prior work has been done on discrete
distributions, such as the Categorical distribution C(μθ(Z)) that we are working with.
In this model we do not have a clear division of the average output (mean) and
uncertainty (variance), so we control the uncertainty through the entropy of the
distribution. We remind that for a categorical distribution, the entropy is

HðXjZÞ ¼ ∑
C

i¼1
pθðXjZÞi � log pθðXjZÞi: ð2Þ

The most uncertain case corresponds to when H(X∣Z) is largest i.e. when p(X∣Z)i= 1/
C for i= 1, . . . ,C. Thus, we want to construct a network pθ(X∣Z) that assigns equal
probability to all classes when we are away from data, but is still flexible when we are
close to data. Taking inspiration from55 we construct a function α= T(z), that maps
distance in latent space to the zero-one domain (T : ½0; inf Þ 7! ½0; 1�). T is a trainable

network of the model, with the functional form TðzÞ ¼ sigmoid �6:9077β�VðzÞ
β

� �
with

VðzÞ ¼ min
j¼f1;::;Kg

jjz� κjjj22, where κj are trainable cluster centers (initialized using k-

means). This function essentially estimates how close a latent point z is to the data
manifold, returning 1 if we are close and 0 when far away. Here K indicates the
number of cluster centers (hyperparameter) and β is a overall scaling (trainable,
constrained to the positive domain). With this network we can ensure a well-
calibrated entropy by picking

pθðXjZÞi ¼ α � pθðXjZÞi þ ð1� αÞ �L; ð3Þ
where L ¼ 1

C. For points far away from data, we have α= 0 and return L regardless
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of category (class), giving maximal entropy. When near the data, we have α= 1 and
the entropy is determined by the trained decoder pθ(X∣Z)i.

Figure 8 shows the difference in entropy of the likelihood between a standard
VAE (left) and a VAE equipped with our developed entropy network (right). The
standard VAEs produce arbitrary entropy, and is often more confident in its
predictions far away from the data. Our network increases entropy as we move
away from data.

Distance in sequence space. To calculate geodesic distances we first need to define
geodesics over the random manifold defined by p(X∣Z). These geodesics are curves
c that minimize expected energy42 defined as

EðcÞ ¼ E½EðcÞ� ¼
Z1

0

E jj∂tXt jj2
� �

dt; ð4Þ

where Xt ~ p(X∣Z= ct) is the decoding of a latent point ct along the curve c. This
energy requires a meaningful (squared) norm in data space. We remind here that
protein sequence data x, y is embedded into a one-hot space i.e.
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where we assume that p(xd= 1)= ad, p(yd= 1)= bd for d= 1, . . . , C. It can easily
be shown that the squared norm between two such one-hot vectors can either be 0
or 2:

Δ2 ¼ jjx � yjj2 ¼ f0; 2g: ð6Þ
The probability of these two events are given as

PðΔ2 ¼ 0Þ ¼ Pðx ¼ yÞ
¼ Pðx1 ¼ y1Þ þ Pðx2 ¼ y2Þ þ � � � þ PðxD ¼ yDÞ

¼ ∑
C

d¼1
adbd ;

ð7Þ

PðΔ2 ¼ 2Þ ¼ 1� PðΔ2 ¼ 0Þ ¼ 1� ∑
C

d¼1
adbd : ð8Þ

The expected squared distance is then given by

EðΔ2Þ ¼
Z
f0;2g

Δ2 � PðΔ2ÞdΔ2

¼ 0 � PðΔ2 ¼ 0Þ þ 2 � PðΔ2 ¼ 2Þ

¼ 2 1� ∑
C

d¼1
adbd

� �
;

ð9Þ

Extending this measure to two sequences of length L is then

EðΔ2Þ ¼ ∑
L

l¼1
2 1� ∑

C

d¼1
al;dbl;d

� �
: ð10Þ

The energy of a curve, can then be evaluated by integrating this sequence measure
(10) along the given curve,

EðcÞ � 2 ∑
N�1

i¼1
∑
L

l¼1
1� ∑

C

d¼1
pðciÞl;d pðciþ1Þl;d

� �
Δt; ð11Þ

where Δt= ∣∣ci+1− ci∣∣2. Geodesics can then be found by minimizing this energy
(11) with respect to the unknown curve c. For an optimal curve c, its length is given

by
ffiffiffiffiffiffiffiffi
EðcÞ

p
.

Optimizing geodesics. In principal, the geodesics could be found by direct
minimization of the expected energy. However, empirically we observed that this
strategy was prone to diverge, since the optimization landscape is very flat near the
initial starting point. We therefore instead discretize the entropy landscape into a
2D grid, and form a graph based on this. In this graph each node will be a point in
the grid, which is connected to its eight nearest neighbors, with the edge weight
being the distance weighted with the entropy. Then, using Dijkstra’s algorithm56

we can rapidly find a robust initialization of each geodesic. To obtain the final
geodesic curve we fit a cubic spline57 to the discretized curve found by Dijkstra’s
algorithm, and afterwards do 10 gradient steps over the spline coefficients with
respect to the curve energy (11) to refine the solution.

Phylogeny and ancestral reconstruction. The n= 200 points used for the
ancestral reconstruction were chosen as latent embeddings from the training set
that were closest to the trainable cluster centers fκigni¼1 found during the estimation
of the entropy network. We used FastTree258 with standard settings for estimation
of phylogenetic trees and subsequently applied the codeml program59 from the
PAML package for ancestral reconstruction of the internal nodes of the tree.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this manuscript originates from publicly available databases. The
sequence data used for pre-training and data for the different protein tasks are available
as part of the TAPE repository (https://github.com/songlab-cal/tape). Predefined, curated
train/validation/test splits of UniProt were extracted as part of the UniLanguage
repository (https://github.com/alrojo/UniLanguage). Data for the β-lactamase family was
extracted from the Pfam database (https://pfam.xfam.org/family/PF00144, accessed Jan
2020). Preprocessed data is available through the scripts provided in our code repository.
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