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Neuro-Tech Revolution: AI-EEG Integration for
Efficient Depression Diagnosis

Bekarys Gabdrakhimov , Member, IEEE , Nicki Detlefsen , Cihan Uyanik , Osama Ejaz, Muhammed
Ahmed Khan , Muhammad Abul Hasan , Saad Ahmed Qazi and Sadasivan Puthusserypady ,

Senior Member, IEEE

Abstract— Major depressive disorder (MDD) is a common
mental disorder affecting the lives of about 280 million
people and increasing rates of suicidal mortality. The cur-
rent methods of diagnosis of depression are subjective,
time-consuming, expensive, and inaccurate because of its
heterogeneous symptoms that overlap with other disorders.
In this paper, we exploit the potential of the fusion of
artificial intelligence (AI) and electroencephalogram (EEG)
to revolutionize the automatic diagnosis of depression and
compare the classification performance of machine learning
(ML) and deep learning (DL) based techniques. Results from
the analysis of data recorded from 46 subjects (23 MDD
and 23 Control) show that the ML methods, particularly
the ensemble model with the Dempster-Shafer combination
rule outperforms other models, achieving an accuracy of
99.62% and showing robustness to the variations in the
data. Our work also includes a study on the effect of various
hyper-parameters, in particular the number of EEG channels,
feature selection methods, number of selected features, and
segmentation length on the model performance. The AI-
EEG integration can enhance the accuracy of diagnosis,
enable personalized treatment plans, and improve patient
outcomes. Continued research, development, and validation
of AI algorithms, in conjunction with ethical considerations,
will be crucial to harness the full potential of this technology
in mental healthcare.

Index Terms— Major Depressive Disorder (MDD), Elec-
troencephalogram (EEG), Convolutional Neural Networks
(CNN), Deep Learning (DL), Machine Learning (ML).

I. INTRODUCTION

MAJOR depressive disorder (MDD), also known as
clinical or unipolar depression, is a prevalent mental

disorder affecting the lives of people of all genders and ages.
According to the WHO, approximately 280 million people
worldwide are suffering from depression, and it is responsible
for almost three fourth of a million deaths annually [1] [2].
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Such repercussions could be avoided if depression had been
diagnosed and treated in its early stages.

MDD is a complex mental health disorder that can be
challenging to diagnose accurately. Currently, its diagnosis is
based on psychiatric interviews. The most popular diagnosing
methods are the 10th revision of the International Classification
of Diseases (ICD-10) developed by the WHO [3] and the 5th
revision of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) developed by the American Psychiatric
Association (APA) [4]. However, these methods are subjective,
and the effectiveness varies depending on the cooperation of
the subject and the doctor. Also, depression symptoms are
complex and vary widely between individuals, which impedes
its diagnosis. According to Østergaard et al., more than 1400
possible combinations of symptoms can result in the diagnosis
of MDD, and also, the symptoms overlap with other similar
disorders and syndromes [5]. Due to all of these complications,
around 50% of all depressed subjects remain untreated [6].

To make the diagnosis of depression low-cost, effective,
objective, and reliable, researchers have been looking into
physiological data to discover biomarkers of MDD. There are
various physiological measurement tools, such as functional
magnetic resonance imaging (fMRI), electroencephalogram
(EEG), and positron emission tomography (PET), that have
been used to diagnose depression [7]–[9]. Out of these tools,
EEG has clear advantages as it is easy to administer, is tolerated
well, and is relatively low cost.

EEG measures the electrical activity of the brain through
electrodes placed on the scalp. It provides valuable information
about the brain’s functioning and can detect abnormalities in
neural activity. Traditionally, EEG has been used to identify
specific brainwave patterns associated with various mental
states and disorders. The intersection of artificial intelligence
(AI) and EEG holds significant potential to revolutionize the
diagnosis and treatment of depression.

AI algorithms can process and analyze large amounts of
EEG data, identifying patterns and relationships that may
not be immediately apparent to human observers. Machine
learning (ML) techniques can be employed to train AI models
to recognize specific EEG patterns associated with depression,
enabling them to differentiate between healthy individuals and
those with depressive symptoms.

Several methods have been suggested to diagnose depression,
and studies report that MDD and healthy subjects have
differences in their EEG activity [10] [11]. These differences
include amplitude, entropy, power in frequency bands, as well
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as differences between left and right hemispheres. Also, with
the advent of ML and deep learning (DL) techniques, it has
been possible to differentiate depressed and healthy subjects
accurately [12] [13] [14]. However, for most of the works, the
trained model is tested on the same dataset. There are many
other variables that can affect the model performance, such as
the sampling frequency, number of electrodes, montage used,
etc. Therefore, to make the models generalizable and accessible,
they need to perform well on other (unseen) datasets. Also,
there are various hyper-parameters including EEG channels
selected, segmentation length, feature selection method, and
number of selected features, to be optimized. The effect of
these parameters on the model performance should be tested
to propose a standard way of designing depression diagnosis
methods. In addition, the accuracy that can be achieved by
ML and DL models vary significantly, and it is not obvious
which method should be opted for. ML and DL methods will
be compared not only in terms of accuracy but also in terms
of generalization, speed and complexity.

This paper is organized as follows: A description of the
datasets and proposed methodology is provided in Section II.
Section III presents DL model architecture with the theoretical
background of each layer. Section IV presents the results for
ML and DL models. The interpretation and discussion of the
obtained results are also been provided in this section. Section V
concludes the paper with some suggestions for future research.

II. METHODS

A. Data description
1) Dataset 1 (D1): The resting-state EEG data was obtained

from 46 participants (23 healthy and 23 depressive). All
participants were between the ages of 20 and 35, and none
have a self-reported neurological disorder history. EEG data
was acquired for 2 minutes each for eyes open (EO) and eyes
closed (EC) states with 1-minute breaks in between. Mitsar
NVX-52 EEG acquisition system was used with a 31 channel
configuration with ear linked (A1-A2) reference montage, and
a sampling rate of 500 Hz. “Depression, Anxiety and Stress
Scale - 21 items” (DASS-21) was used as scoring scheme to
generate expert verified ground truth labeling.

2) Dataset 2 (D2): This is a publicly available dataset1

collected with 19 electrodes referenced with linked ear and
placed according to the 10-20 international system [15] [16].
Data was collected from 34 MDD subjects (17 males and 17
females, mean age 40.3 ± 12.9 years) and 30 healthy controls
(21 males and 9 females, mean age 38.3 ± 15.6 years). MDD
subjects were diagnosed by using DSM-IV [17]. The EEG data
was acquired in EO and EC states for 5 minutes each. The
sampling rate was set to 256 Hz.

B. EEG Data Preprocessing
The raw EEG signal is contaminated with physiological

(eye blinks and/or eye movements, muscle or body movements,
heartbeats, etc.) and non-physiological (power-line interference,
electrode displacement, device error, etc.) artifacts. Removing

1https://figshare.com/articles/dataset/EEG Data New/4244171

these artifacts is crucial to increase the identification perfor-
mance on underlying EEG signals. The preprocessing steps in
this work consist of filtering, artifact removal with Independent
Component Analysis (ICA) [18], and segmentation.

The EEG data was band-pass (0.5-70 Hz) filtered using a
4th order Chebyshev type II filter. To get rid of the power-line
interference, a notch filter at 50 Hz was used. After these
filtering operations, the data still contained artifacts such as
eye blinks, eye movements, heartbeat, and muscle movements,
which were minimized using ICA, where it divides the EEG
signals into independent components, and then each component
was visually analyzed and removed. The artifact minimized
EEG signal was then reconstructed by isolating the undesired
component(s).

C. Data segmentation

In the model development process, it is common to divide
the EEG signal into shorter segments to speed up the feature
extraction step and to increase the amount of training data. In
related works, various data lengths were used, which varies
between 2, 3, 6, 30, and 75 seconds [19]–[24]. In this work,
different segmentation lengths (2, 4, 10, and 20 seconds) were
used for ML models. For the DL model, a 1-second segment
was selected so that the training data size could be large enough
to enable model training. A segment length of <1 second might
not be informative enough to contain specific characteristics
for identification. The total number of data segments for each
segmentation length are shown in Table I.

TABLE I
DATA SEGMENTS FOR DIFFERENT SEGMENTATION LENGTHS.

Seg. len. (s) MDD Healthy

1 3445 4589
2 1803 2372
4 910 1194

10 364 482
20 194 255

D. Feature extraction

Feature extraction is used for revealing hidden pat-
terns from the finite length EEG signal, say, x =
{x(1), x(2), . . . , x(N)}T , where N is the length of the signal.
In this work, linear and non-linear features were extracted
based on the most discriminative features proposed by relevant
works. Those features were extracted by using 3 [25], 6 [19],
19 [26], or 31 EEG channels. Choice of the channels is based
on the literature, and the electrode locations for each dataset
are provided in Table II. Since the electrode montages in D1
and D2 were not exactly the same, proximity based closeness
was considered to select the channels.

1) Statistical features: Statistical features include mean,
variance, skewness, kurtosis, energy, and Hjorth parameters.
Hjorth parameters - activity (h0), mobility (h1), and complexity
(h2) - are statistical time-domain properties commonly used in
feature extraction of biomedical signals [27]. Here, h0 is the
variance and h1 (Eq.(1)) is the mean frequency of the signal, x.

https://figshare.com/articles/dataset/EEG_Data_New/4244171
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TABLE II
EEG CHANNELS SELECTED FROM D1 AND D2

# of ch Dataset Channels

3
1 Fp1, Fpz, Fp2
2 Fp1, Fz, Fp2

6
1 FT7, FT8, T6, T5, TP7, TP8
2 F7, F8, T6, T5, T3, T4

19
1 Fp1, Fp2, F3, F4, F7, F8, Fpz, TP7, TP8,

T5, T6, P3, P4, FT7, FT8, O1, O2, C3, C4

2 Fp1, Fp2, F3, F4, F7, F8, Fz, T3, T4,
T5, T6, P3, P4, Pz, O1, O2, C3, C4, Cz

31
1

Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3,
CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz, O2

2 —

h2 (Eq.(1)) is the estimation of signal bandwidth and indicates
how similar the signal is to a sine wave.

h1 =

var
(

dx(t)
dt

)
h0


1
2

, h2 =
h1

(
dx(t)
dt

)
h1(x(t))

. (1)

2) Band powers: Using Welch method, the EEG band power
is calculated for each distinct frequency bands, i.e., δ (0.5–4
Hz), θ (4–8 Hz), α (8–16 Hz), β (16–32 Hz), and γ (32–70
Hz) [28].

3) Entropy: Entropy measures the uncertainty or randomness
in a signal [29]. Sample entropy (Sen) defined in Eq.(2) and
power spectral entropy (PSen) defined in Eq.(3) are used in
this work.

Sen = log

(
A(s, r)

A(s+ 1, r)

)
, (2)

where s is the segment length, and r is the threshold for
similarity (Chebyshev distance). Each segment is compared to
the rest of the segments, and the number of segments within
a similarity threshold (r) are summed to obtain A. Higher
values indicate that the signal is irregular or random, whereas
lower values indicate regularity or repetitiveness. The following
values were used in this work: s = 2 and r = 0.2std(x). PSen

is computed as follows:

PSen = −
fs/2∑
f=0

P (f) log2(P (f)), (3)

where P (f) is the normalized power spectral density obtained
using Welch method and fs is the sampling rate.

4) Hurst exponent (He): It is a measure of the long-term
memory in a time series [30]. He (Eq.(4)) can vary between 0
and 1 and based on its values, the time series can be classified
into: (i) Anti-persistent time series (mean-reverting) (He < 0.5),
(ii) Random walk (impossible prediction) (He = 0.5), and (iii)
Persistent time series (trending) (He > 0.5), where an increase
in value will most likely be followed by an increase in the
short term memory and vice versa.

He =
log(R/σ)

log(N/2)
, (4)

where R, σ, and N are the range, standard deviation, and
length of the time series, respectively.

5) Fractal dimension (FD): It is a measure that quantifies the
complexity or self-similarity of the signal. In this work, two
different algorithms, namely, Higuchi’s and Katz’s algorithms
were used to estimate the FD.

According to Higuchi’s FD (HFD) algorithm [31], if we
are given a finite time-series, x of length N and a param-
eter kmax ≥ 2, for each k ∈ {1, 2, . . . , kmax} and m ∈
{1, 2, . . . , k}, the length of the curve, Lm(k), is given by:

Lm(k) =
N − 1

⌊N−m
k ⌋k2

⌊N−m
k ⌋∑

i=1

|x(m+ik)−x(m+(i−1)k)|, (5)

and L(k) = 1
k

∑k
m=1 Lm(k). In the above equation, ⌊N−m

k ⌋
is the integer part of the ratio. Finally, the HFD of x is the
slope of a best-fitting line on a plot of log

(
1
k

)
vs logL(k). In

this study, kmax was set to 10.
Katz FD (KFD) is another computationally less demanding

method of estimating FD [32]. For the time series x, the
maximum distance (d) of the data points from the first data
point, x(1), is calculated as d = max(|x(1) − x(j)|), where
j ∈ {2, 3, . . . , N}. Then the total length of the time series is
calculates as,

L =

N∑
i=2

|x(i)− x(i− 1)|. (6)

The average distance between two successive points is a =
L/(N − 1). KFD is then calculated as,

KFD =
log(L/a)
log(d/a)

. (7)

6) Detrended fluctuation analysis (DFA): This feature mea-
sures the self-affinity and long-term memory of a time series
similar to He. The advantage of this method is that it can
be applied to non-stationary signals, such as EEG signals. To
calculate DFA, we first integrate the time series for each value
of k (1 ≤ k ≤ N ), after subtracting the mean, x̄ of x, to
obtain y(k) =

∑k
i=1 x(i)−x̄. The integrated time series is then

segmented into smaller sections of length m. In each of these
segments, a least squares line is fit to the data (representing
the trend in that segment), denoted as ym(k). The next step is
to detrend the integrated time series by subtracting the local
trend, ym(k). The fluctuation is then calculated as,

F (m) =

√√√√ 1

N

N∑
k=1

(y(k)− ym(k))2. (8)

Finally, DFA is computed as the slope of a straight line fit to
the double logarithmic (“log-log”) graph of F (m) against m,
frequently referred to as a fluctuation plot [33].

E. Feature selection
In the model building pipeline, feature selection is a crucial

step in identifying the subset of relevant input features. The
feature set can contain redundant and noisy data, hindering the
interpretability of the model. By performing feature selection,
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it is possible to reduce over-fitting, improve accuracy, and
speed up the model training time. In this work, the analysis
of variance (ANOVA), genetic algorithm (GA), and minimum
redundancy maximum relevance (mRMR) methods are used
for feature selection.

1) ANOVA: It is a statistical test for checking if the means of
two or more samples differ. ANOVA calculates the F-value for
each feature, which indicates if the means for different classes
are statistically and significantly different or not. This could
be used to select the best features with significantly different
mean values between the two classes. For example, if the He

is considered and it has a high F-value close to 1, then the
mean of He is different for depressed and healthy subjects. On
the other hand, if F-value is low (≈ 0), then the mean of He

is similar for both classes suggesting it is not a good feature.
2) GA: It is a method for solving both constrained and

unconstrained optimization problems. For feature selection, first,
random subsets of features are selected to create populations.
Each population is evaluated with the predictive model as a
task at hand, and evolved through generations by crossover
(combining successful features) and mutation (introducing
randomly selected new features).

3) mRMR: In this method [34] of feature selection, at every
iteration (i), the algorithm selects the features that have a
high correlation with the target variable and a low correlation
with features that have already been selected in the previous
iterations. Thus, the score for each feature (z) is:

scorei(z) =
relevance(z| target)

redundancy(z| features selected)
. (9)

The algorithm adds feature with the highest score to the selected
feature set at each iteration. The relevance is calculated as F-
statistic between the feature and the target, while redundancy
is the average of Pearson correlations of feature z and features
selected at previous iterations.

F. Classifiers
The classification problem concerns a supervised learning

task, as the algorithms are trained on labeled data and there are
two classes, either healthy or depressed. In the present study,
for the classification task, k-nearest neighbors (k-NN) [35],
support vector machine (SVM) [36], random forest (RF) [37],
extreme gradient boosting (XGBoost) [38] and an ensemble
of them were applied.

1) k-Nearest Neighbors: It is a simple algorithm for perform-
ing supervised classification. The algorithm operates on the
principle that samples belonging to the same class are clustered
in the feature space. To classify a new data point, the k-NN
algorithm calculates the distances between this new point and
its nearest neighbors and then selects the k closest neighbors.
The final step involves assigning the new data point to a class
through a majority vote of the selected k neighbors.

2) Support Vector Machine: SVM operates by finding the
optimal hyperplane in a multi-dimensional feature space
that separates the data points into two distinct classes. The
hyperplane is optimized to maximize the margin, or distance,
from the nearest data points from either class. When the data
is not linearly separable, a kernel can be used to transform the

data into a linearly separable space. In this study, a polynomial
kernel was used as suggested by grid search.

3) Random Forest: It is a ML algorithm that uses a collection
of decision trees to make predictions. The algorithm operates by
having each individual decision tree make a prediction, with the
final prediction being determined by the class that receives the
most votes. Diversity of the decision trees is ensured through
the random subset of features used in their training, leading to
a more robust overall model. This combination of individual
diverse models has been shown to improve prediction accuracy
compared to using any of the individual model alone.

4) Extreme Gradient Boosting: XGBoost is a decision tree-
based algorithm that utilizes the boosting technique. Unlike RF,
which uses a bagging technique where decision trees work
in parallel, XGBoost combines decision trees sequentially.
The subsequent trees aim to correct the mistakes made by
previous trees by focusing on samples that the previous trees
mis-classified. This sequential combination of decision trees
results in a highly accurate and precise model.

5) Ensemble technique: The combination of multiple individ-
ual model predictions to make a single prediction is achieved
by using the ensemble model. There are various techniques
for combining multiple models, such as averaging predictions,
weighted averaging, or majority voting. In this work, the outputs
from k−NN, SVM, RF, and XGBoost models are combined
using the Dempster-Shafer combination rule [39].

III. PROPOSED CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE AND TRAINING

In this section, a theoretical description of Convolutional
Neural Network (CNN) is presented. Topology of the proposed
deep CNN is also outlined with a description of the training
procedure.

A. Convolutional Neural Network

CNN is a type of DL algorithm with superior performance
compared to other DL models on images and audio data. They
typically consist of convolutional, pooling, fully connected,
dropout and batch normalization layers.

1) Convolutional Layer: Convolutional layer is the core
building block of CNN. It involves an input and kernel or
feature detector. The kernel is aligned to an area of the input,
and the dot product is performed. The kernel then repeats the
procedure with shifting by stride. One convolutional layer can
contain many kernels and the number of kernels affects the
depth of an output. After each convolutional layer, activation
functions, such as ReLU or hyperbolic tangent, is applied to
introduce non-linearity.

2) Pooling Layer: The pooling layer reduces the dimension-
ality of the feature map, leading to quicker computation and
fewer parameters to be learned. Like the convolutional layer,
it employs kernels, however, here the kernel selects either the
maximum (max-pooling) or mean (average pooling) values
within the receptive field.



B. GABDRAKHIMOV et al.: MIND MEETS MACHINE: AI AND EEG TO REVOLUTIONIZE DEPRESSION DIAGNOSIS 5

3) Fully Connected Layer: Fully connected layer is typically
the final layer in the CNN. As the name suggests, all nodes
from the previous layer are connected to all nodes in the
next layer. The fully connected layer takes the input features
generated in previous layers and performs classification based
on them. It is also usually followed by a non-linear activation
function, except for the last layer.

4) Dropout and Batch Normalization: Dropout randomly
drops (sets to zero) the output of neurons with a certain
probability. If neurons are randomly dropped, other neurons
have to make predictions, resulting in a network consisting of
independent neurons that do not rely on a specific previous or
neighbouring neuron. Batch normalization is another technique
that makes the training more stable and faster by normalizing
the input to each layer.

B. Proposed Architecture

Figure 1 illustrates the proposed architecture of the CNN
model. EEG signals were processed the same way as it was
for training ML models, i.e., filtered and ICA performed. The
network takes as input a one second length of EEG signal
from all 31 channels. The data is fed to 3 blocks consisting of
convolutional, max-pooling, batch normalization, and dropout
layers, followed by a fully-connected layer and output layer.
The kernel size is chosen to be 11 × 7, as it was observed
that a larger kernel size gives better performance. The addition
of batch normalization and dropout with a 50% rate help to
prevent overfitting. The activation function is chosen as the
Leaky ReLU.

C. Training

The network was built and trained using Keras library. The
model was trained for 200 epochs with a batch size of 4. The
learning rate was set to 0.0005 with a cosine decay to reduce
the learning rate as the training progressed. As an optimizer, a
computationally efficient and low memory-demanding Adam
algorithm was used [40]. The distribution between train, test,
and validation sets is chosen as 70:15:15.

IV. RESULTS AND DISCUSSION

In this section, results obtained with varying channel num-
bers, segmentation lengths, and feature selection algorithms are
presented. All presented results for ML models are for 10-fold
cross-validation.

A. Effect of number of channels

To identify an optimal number of channels for the diagnosis
of depression, the performance of five different classifiers
was tested on various channel numbers. The segmentation
length was fixed to be 10 seconds and all other parameters
varied. The summary of various parameters is given in Table
III. Table IV provides the results (accuracy) obtained for a
10-fold cross-validation. Results are listed for each classifier’s
best-performing feature selector and the percentage of selected
features.

From the results, it is observed that features extracted from
31 channels give the best results when only a quarter of the
features are selected with the GA. The highest accuracy of
99.62 ± 0.58% is obtained with the ensemble model. However,
for 31 channel EEG classification, the accuracies of other
classifiers are also high (>98%). It is observed that the 3
channel case has the highest accuracy (92.33±2.21% with the
XGBoost classifier and 90% features selected with mRMR). In
general, as the number of channels increases, there is also an
increase in the model performance. Additionally, the ensemble
model performs better for all cases except 3-channel case where
XGBoost performs better.

B. Effect of segmentation length
The effect of segmentation length on model performance

was tested. Selected segmentation lengths are 2, 4, 10, and 20
seconds. The results are provided for 19-channel case. ANOVA
was used for feature selection with 90% of features selected.
Performance metrics of the five classifiers for various segmen-
tation lengths are shown in Table V. It can be observed that the
model accuracies are approximately similar for all segmentation
lengths and all are generally high, >95%. However, for the 10-
second case, all models have an accuracy of 98% or higher and
thus variance between model performances is lower compared
to other cases. For instance, in the 2-second case, the model
accuracies vary between 98.69% to 95.12%. Also, it should
be noted that most of the models (k-NN, RF and Ensemble)
reached their highest accuracies when 10-second segments
are used, whereas SVM and XGBoost with 20 and 2-second
segments, respectively.

C. Effect of feature selection method
For comparison of different feature selection methods, 19

channels were used with a segmentation length of 10 seconds
and 90% of features selected.

A comparison plot of all three feature selectors for various
models is shown in Fig. 2. It can be seen that the GA performs
better with 25% of features for all classifiers. However, it gets
outperformed by ANOVA and mRMR when more features
are selected. ANOVA and mRMR have around the same
performance. Both methods are model agnostic, meaning they
can be used with any type of predictive model and do not
require the model to choose features. Also, both methods
utilize F-values as a measure of the significance of differences
between groups. Therefore, it is reasonable that they have
the same performance. Furthermore, it is noteworthy that GA
demonstrates superior performance in comparison to other
feature selection techniques when applied to ensemble model.

TABLE III
OPTIMIZED HYPERPARAMETERS AND REFERENCE TO THE SECTION

Options Optimized
section

Channels 3, 6 , 9 , 31 IV - A
Feature percentage 25, 50, 75, 90 , 100 IV - A
Segmentation length (s) 2, 4, 10 , 20 IV - B
Feature selector ANOVA , GA, mRMR IV - C
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Fig. 1. Employed CNN architecture for subject classification.

TABLE IV
MODEL INFERENCE RESULTS ON TEST DATA FOR VARIOUS CHANNEL NUMBERS.

# of ch Model Feature selector
(% of features) # of features Accuracy Precision Recall F1-score

31

k-NN All features 558 of 558 99.12 ± 0.80 100.00 ± 0.0 97.76 ± 2.06 98.51 ± 1.59
SVM ANOVA (90%) 502 of 558 99.12 ± 0.98 97.92 ± 3.69 97.76 ± 3.24 97.91 ± 1.27
RF mRMR (75%) 418 of 558 98.49 ± 1.09 99.04 ± 2.02 95.86 ± 2.85 96.70 ± 2.70

XGBoost mRMR (75%) 418 of 558 98.74 ± 0.98 98.12 ± 2.81 95.54 ± 4.06 97.21 ± 1.82
Ensemble GA (25%) 90 of 558 99.62 ± 0.58 99.69 ± 0.94 99.35 ± 1.29 99.51 ± 1.05

19

k-NN ANOVA (75%) 256 of 342 98.56 ± 1.50 99.18 ± 1.74 97.14 ± 2.56 97.68 ± 1.18
SVM ANOVA (90%) 307 of 342 97.84 ± 1.85 98.29 ± 1.85 96.30 ± 2.58 97.55 ± 1.84
RF All features 342 of 342 98.09 ± 1.43 99.15 ± 1.30 95.45 ± 2.58 97.25 ± 1.92

XGBoost mRMR (90%) 307 of 342 98.44 ± 1.43 98.66 ± 3.12 97.17 ± 2.84 97.68 ± 2.27
Ensemble GA (90%) 106 of 342 99.28 ± 1.09 99.20 ± 1.70 99.14 ± 1.31 98.86 ± 0.86

6

k-NN GA (50%) 25 of 108 97.36 ± 1.19 98.86 ± 1.87 96.02 ± 1.89 96.69 ± 1.84
SVM GA (90%) 37 of 108 93.64 ± 2.35 95.60 ± 3.30 90.05 ± 5.00 92.24 ± 3.07
RF All features 108 of 108 96.53 ± 2.23 96.85 ± 2.81 94.02 ± 2.98 95.64 ± 1.68

XGBoost ANOVA (75%) 81 of 108 97.01 ± 1.62 96.83 ± 2.73 96.01 ± 3.18 95.98 ± 2.12
Ensemble ANOVA (90%) 97 of 108 98.44 ± 1.07 98.54 ± 1.99 96.03 ± 3.15 97.10 ± 2.11

3

k-NN ANOVA (90%) 48 of 54 85.48 ± 3.55 91.11 ± 5.83 71.87 ± 6.54 81.23 ± 2.34
SVM mRMR (75%) 40 of 54 78.53 ± 3.79 75.10 ± 7.51 69.60 ± 3.59 72.39 ± 8.47
RF ANOVA (75%) 40 of 54 90.16 ± 3.84 88.61 ± 5.20 84.67 ± 5.26 87.31 ± 3.97

XGBoost mRMR (90%) 48 of 54 92.33 ± 2.21 90.40 ± 5.89 89.46 ± 7.25 90.94 ± 4.03
Ensemble ANOVA (90%) 48 of 54 91.25 ± 3.50 90.53 ± 5.10 90.05 ± 2.95 89.65 ± 3.68

Segmentation length is fixed to be 10 sec. The metrics are with mean and standard deviation for 10-fold cross-validation runs.

D. DL method

The model’s performance on test data (D1) is given in Fig. 3.
According to the confusion matrix, the model has an accuracy

TABLE V
RESULTS FOR VARIOUS SEGMENTATION LENGTHS

Seq.
len (s) Model Accuracy Precision Recall F1-score

2

k-NN 96.69 ± 0.70 98.91 ± 0.92 93.58 ± 2.85 96.13 ± 0.69
SVM 95.12 ± 1.19 94.85 ± 1.42 93.52 ± 2.23 94.13 ± 1.31
RF 97.45 ± 0.58 97.96 ± 0.87 96.39 ± 1.45 96.70 ± 1.19

XGBoost 98.69 ± 0.52 98.80 ± 0.78 97.48 ± 1.12 98.36 ± 0.70
Ensemble 98.52 ± 0.53 98.56 ± 0.99 97.88 ± 0.68 98.39 ± 0.66

4

k-NN 97.83 ± 0.95 98.99 ± 1.54 95.57 ± 2.41 97.63 ± 0.99
SVM 97.06 ± 1.17 96.71 ± 1.26 96.14 ± 1.54 96.63 ± 1.21
RF 97.88 ± 1.10 98.29 ± 1.52 96.70 ± 2.12 97.06 ± 1.18

XGBoost 98.55 ± 0.75 97.97 ± 1.85 97.84 ± 1.29 97.71 ± 0.74
Ensemble 98.75 ± 0.81 98.43 ± 1.52 98.41 ± 1.27 98.58 ± 0.93

10

k-NN 98.44 ± 0.93 98.90 ± 1.35 96.58 ± 2.80 98.11 ± 1.89
SVM 97.84 ± 1.85 98.29 ± 1.85 96.30 ± 2.58 97.55 ± 1.84
RF 98.08 ± 1.10 98.34 ± 2.19 97.71 ± 2.80 98.00 ± 0.93

XGBoost 98.32 ± 1.71 98.03 ± 2.20 96.60 ± 3.04 97.83 ± 1.63
Ensemble 99.04 ± 1.04 98.59 ± 1.88 98.86 ± 1.40 98.72 ± 0.99

20

k-NN 96.39 ± 3.38 98.91 ± 2.19 92.02 ± 5.41 96.42 ± 3.10
SVM 98.43 ± 2.25 99.44 ± 1.67 95.23 ± 4.97 97.52 ± 1.99
RF 96.38 ± 3.55 97.47 ± 3.31 93.10 ± 6.29 96.42 ± 2.88

XGBoost 97.06 ± 2.29 95.86 ± 5.05 94.65 ± 4.78 94.12 ± 5.77
Ensemble 97.74 ± 2.49 97.50 ± 4.03 97.87 ± 2.62 98.14 ± 1.70

Fixed channels numbers (19), percentage of features selected (90%), feature
selection methods (ANOVA). The metrics are shown with mean and
standard deviation for 10-fold cross-validation runs

of 98.74% with almost the same performance for both classes.
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Fig. 2. The average accuracy of (a) k-NN, (b) SVM, (c) RF, (d) XGBoost
and (e) Ensemble model for various percentages of features chosen
(25%, 50%, 75%, 90%, and all features) and feature selector methods
(ANOVA, GA, mRMR)
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Fig. 3. Confusion matrix for test data (D1).

E. Generalization test

The trained models are expected to be generalizable to
perform well on unseen data. Both ML and DL models have
good accuracy on unseen test data achieving an accuracy above
98%. However, in this work, models trained on D1 will be
tested on D2 to see if they can generalize on other datasets.
It is a complicated task as there are differences between
datasets regarding EEG devices, channels, sampling frequency,
background noise, montage, and preprocessing steps applied
during data acquisition.

Figure 4(a) shows the performance of ML models on D1 and
D2 for various percentages of features used for 3 channels case.
Referring to the figure, XGBoost and k-NN have the highest
difference in performance on both datasets, with a difference
of approximately 10 to 30%. On the other hand, SVM has
the best ability to generalize with a variation of only around
3% between datasets for cases except when all features are
used. This figure (Fig.4(b)) also shows model performances for
19-channel cases. It is observed that the models can generalize
even better when more channels are used. Also, the ensemble
model has a better performance compared to others on D2
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(a) Test for generalization for 3 channels case
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(b) Test for generalization for 19 channels case

Fig. 4. ML model generalization performance on D1 and D2 for various
percentages of features extracted from 3 (a) and 19 (b) channels with
10-second segmentation length and ANOVA feature selection technique.
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Fig. 5. Six features negatively affecting the generalization ability of the
models.

when 19 channels are used.
Interestingly, when all of the features are used, the ability to

generalize for all models drops dramatically, as low as 26% for
k-NN. To find an explanation for this trend, a closer analysis
was performed on those features that are not included in the
90% of features extracted in the 3 channels (Fp1, Fp2 and
Fpz) case. When all features are used, there are 54 features
in total and when 90% of features are selected, the model is
trained on 48 features. This indicates that 6 new features cause
a significant reduction in model performance on D2. The mean
and variance of those 6 features for D1 and D2 are shown in
Fig. 5. As illustrated for those 6 features, an opposite relation
exists between for MDD and control group subjects between
D1 and D2.

The generalization ability of the CNN model was also tested
on D2, which has only 19 channels, whereas CNN presented
before was trained for 31 channels. Thus, the model was
retrained on D1 with 19 channels for testing on D2 with
the same architecture and hyper-parameters. The final model
achieved an accuracy of 93.7% on test data from D1, but failed
to generalize on D2 with an accuracy of only 43.7%. However,
when trained on D2, the same model achieves an accuracy of
97.3% on a test data from D2.

F. Discussion

One of the main objectives of this work is to study the
effect of number of channels, segmentation length, and feature
selection techniques. From the experiments with varying
number of channels (Table IV), it is evident that an increase
in the number of channels results in higher accuracy, with the
highest accuracy of 99.56 ± 0.58% achieved for 31 channel
case with the ensemble model. However, having more channels
increases computational time to extract features from each of
those channels. Therefore, the number of channels should be
selected for the specific application depending on requirements
for inference time and accuracy.

Another hyper-parameter that can impact the model is the
segmentation length. Experiments performed with segmentation
lengths of 2, 6, 10, and 20 seconds suggest that there is not
much of a difference in model performance, with all of them
having high accuracies with slight variation. However, the
10-second case has better stability across different classifiers.

This study has also compared ANOVA, GA, and mRMR
feature selection methods. For SVM, RF, and XGBoost,
reducing the feature set by half with ANOVA or mRMR gives
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comparable results to the case when all features are used.
Additionally, the reduction of the feature set further results
in a sharper negative impact on accuracy. Even though GA
performs worse when the feature set is 50% or higher, it
performs better when only 25% of features are used. Thus,
this experiment suggests that GA should be the choice if a
significant reduction in the feature set is required. Otherwise,
mRMR or ANOVA are better choices with significantly less
computational requirements. In addition, although feature
selection does not result in a significant increase in performance,
it improves the ability to generalize, as illustrated in Fig. 4.

In terms of generalisation, all trained classifiers can gen-
eralize well on unseen data from the same dataset with a
similar data acquisition procedure. To assess generalization
further, the models trained with D1 were tested on D2. All ML
models are able to perform better than random guess staying
above 60% accuracy when 90% or less features are selected.
ML models can generalize much better when 19 channels are
used compared to when fewer channels are used. Also, results
suggest that when building generalizable models, it is essential
to perform feature selection. Otherwise, the performance could
drop below random guess. It is also important to compare the
feature distributions (mean, variance, etc.) between datasets
per class to ensure the consistency.

Even though ML models can generalize well, CNN has poor
performance on generalization. This could be attributed to the
fact that the CNN has learned features that are specific to D1
but not present in D2 or that CNN requires more extensive,
more diverse training data to generalize well. Further analysis is
suggested to find an explanation for this and further examination
of the interpretability of the models is necessary.

When comparing ML and DL classification methods, we
must focus on performance, simplicity, speed, generalization
ability, and explainability. ML models, particularly the ensem-
ble model attains slightly higher accuracy than DL method,
99.62% versus 98.74%. DL methods have the advantage of
scaling and improving as the data quality and quantity increases.
Another advantage of DL methods is that they are simpler
than ML methods because they do not require manual feature
extraction and selection, they learn important characteristics
directly from data. Even in some works, the CNN model
takes the raw EEG data without any preprocessing or data
cleaning [41]. This makes DL model development and inference
time faster than ML methods. Tests were performed on the
inference time of ML and DL methods. The inference time of
ML models on 19 channel data, including extracting features
for each channel, is 27.45s, whereas the inference time for
the CNN model is 1.14s. Thus, there is a huge difference
in inference time between the methods. As discussed before,
concluding that ML methods are more stable on varying dataset.
Another point is explainability, which has critical importance
in the medical field. Classical ML methods definitely have
an advantage of explainability compared to DL models. But,
with various techniques such as Grad-CAM, SHAM, or LIME
behaviour of models can be explained [42]–[44].

V. CONCLUSION AND FUTURE WORK

The intersection of AI and EEG holds significant potential
to revolutionize the diagnosis and treatment of depression.
One of the significant challenges in diagnosing depression
is the subjective nature of self-reporting symptoms. AI and
EEG integration can potentially overcome this challenge by
providing objective measurements of brain activity, which can
serve as a complementary diagnostic tool.

The main aims of this research were to propose an accurate
way of diagnosing depression, study the effect of various hyper-
parameters systematically and compare ML and DL based
methods. An ensemble model that combines the predictions
of k-NN, SVM, RF and XGBoost with the Dempster-Shafer
rule produced the highest accuracy of 99.62± 0.58% for 31
channels and 10-second segmentation lengths. CNN model
has also provided a high accuracy of 98.74% for 1-second
EEG signals from 31 channels. The generalization test results
suggest that ML models can generalize well without training
on D2 when a larger number of features are used and combined
with feature selection methods. However, CNN model fails to
generalize on another dataset which could be attributed to the
limited dataset size.

The study on the effect of hyper-parameters indicates that
number of channels, feature selection method, and the number
of features selected significantly impact model performance.
In contrast, the segmentation length does not seem to be as
important. As features are extracted from larger numbers of
channels, the model performance improves, but there is also a
trade-off between feature extraction time and accuracy. The GA
tends to yield better results with a smaller subset of features
(25%) and also works well in combination with the ensemble
model. By comparing ML and DL methods, it can be outlined
that DL methods are faster and simpler as it has inherent
feature extraction and selection capabilities.

Future research should aim to verify our findings with larger
and more diverse data to validate these results. There is a need
for public datasets with a variable age range, demographics,
noise levels, etc. Also, there is a demand for an automatic
artifact removal method that can reliably remove as many of
them as possible (muscle, eye movement, blinks, heartbeat,
etc.).
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